Treatment of sensorineural hearing loss of vascular genesis and age-related hearing loss

Authors

  • M.A. Trishchynska Shupyk National Healthcare University of Ukraine, Kyiv, Ukraine
  • O.Ye. Kononov Shupyk National Healthcare University of Ukraine, Kyiv, Ukraine

DOI:

https://doi.org/10.22141/2224-0713.18.1.2022.931

Keywords:

sensorineural hearing loss’ cardiovascular diseases, presbyacusis, choline alfoscerate

Abstract

Sensorineural hearing loss (SNHL) (neurosensory, perceptive) is a form of impaired hearing to its complete loss that is cha-racterized by the impaired sound-perceiving apparatus of the auditory analyzer. SNHL is widespread and is triggered by many etiologic factors. The high prevalence of cardiovascular diseases explains a great number of patients with SNHL of vascular genesis. Age-related hearing loss (presbyacusis) is one of the most common neurodegenerative diseases in developed countries. Since presbyacusis is beyond cure, it is recommended to use auxiliaries to improve audibility and communication to prevent reduced cognitive functions in elderly individuals. Choline alfoscerate, a semisynthetic derivative of phosphatidylcholine is a precursor of acetylcholine in the brain. The pharmacological effect of Medotilin resulted from stimulation of acetylcholine and phosphatidylcholine synthesis (membrane phospholipid), which improves the transmission of signals of cholinergic receptors, membrane elasticity, and receptors functioning.

Downloads

Download data is not yet available.

References

Adjamian P., Sereda M., Hall D.A. The mechanisms of tinnitus: perspectives from human functional neuroimaging. Hear. Res. 2009. 253. 15-31.

Akeroyd M.A. Are individual differences in speech reception related to individual differences in cognitive ability? A survey of twenty experimental studies with normal and hearing-impaired adults. Int. J. Audiol. 2008. 47(suppl. 2). S53-S71. doi: 10.1080/14992020802301142.

Amenta F., Parnetti L., Gallai V., Wallin A. Treatment of cognitive dysfunction associated with Alzheimer’s disease with cholinergic precursors. ineffective treatments or inappropriate approaches? Mech. Ageing Dev. 2001. 122. 2025-2040. doi: 10.1016/s0047-6374(01)00310-4.

Aoki M., Okuda H., Ishihara H., Hayashi H., Ohashi T., Nishihori T. et al. Hearing loss is associated with hippocampal atrophy and highcortisol/dehydroepiandrosterone sulphate ratio in older adults. Int. J. Audiol. 2020. 60. 293-299. doi: 10.1080/14992027.2020.1831703.

Belal A. Pathology of vascular sensorineural hearing impairment. Laryngoscope. 1980. 90. 1831-9. DOI: 10.1288/00005537-198011000-00011.

Bothwell M. NGF, BDNF, NT3, and NT4. Handbook of Expe­rimental Pharmacology. 2014. 220. 3-15. https://doi.org/10.1007/978-3-642-45106-5_1.

Budni J., Bellettini-Santos T., Mina F., Garcez M.L., Zugno A.I. The involvement of BDNF, NGF and GDNF in aging and Alzheimer’s disease. Aging and Disease. 2015. 6(5). 331-341. https://doi.org/10.14336/AD.2015.0825.

Catanesi M., d’Angelo M., Antonosante A., Castelli V., Alfonsetti M., Benedetti E. et al. Neuroprotective potential of choline alfoscerate against beta-amyloid injury: involvement of neurotrophic signals. Cell. Biol. Int. 2020. 44. 1734-1744. doi: 10.1002/cbin.11369.

Chen Y.C., Chen H., Jiang L., Bo F., Xu J.J., Mao C.N. et al. Presbycusis disrupts spontaneous activity revealed by resting-state functional MRI. Front. Behav. Neurosci. 2018. 12. 44. doi: 10.3389/fnbeh.2018.00044.

Chen Y.C., Yong W., Xing C., Feng Y., Haidari N.A., Xu J.J. et al. Directed functional connectivity of the hippocampus in patients with presbycusis. Brain Imaging Behav. 2020. 14. 917-926. doi: 10.1007/s11682-019-00162-z.

Ciriaco E., Bronzetti E., Caporali M.G., Germana G.P., Niglio T., Piccolo G. et al. Effect of choline alfoscerate treatment on changes in rat hippocampus mossy fibres induced by monoliteral lesioning of the nucleus basalis magnocellularis. Arch. Gerontol. Geriat. 1992. 14. 203-213. doi: 10.1016/0167-4943(92)90021-u.

Cuello A.C., Pentz R., Hall H. The brain NGF metabolic pathway in health and in Alzheimer’s pathology. Frontiers in Neuroscience. 2019. 13. https://doi.org/10.3389/fnins.2019.00062.

Davies P., Maloney A.J. Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet. 1976. 2. 1403. doi: 10.1016/s0140-6736(76)91936-x.

De Jesus Moreno M. Cognitive improvement in mild to mode-rate Alzheimer’s dementia after treatment with the acetylcholine precursor choline alfoscerate: A multicenter, double-blind, randomized, placebo-controlled trial. Clinical Therapeutics. 2003. 25(1). 178-193. https://doi.org/10.1016/s0149-2918(03)90023-3.

Diederen K.M., Neggers S.F., Daalman K., Blom J.D., Goekoop R., Kahn R.S. et al. Deactivation of the parahippocampal gyrus preceding auditory hallucinations in schizophrenia. Am. J. Psychiatry. 2010. 167. 427-435. doi: 10.1176/appi.ajp.2009.09040456.

Disease G.B.D., Injury I., Prevalence C. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: asystematic analysis for the global burden of disease study 2015. Lancet. 2016. 388. 1545-1602. doi: 10.1016/S0140-6736(16)31678-6.

Eckert M.A., Cute S.L., Vaden K.I. Jr., Kuchinsky S.E., Dubno J.R. Auditory cortex signs of age-related hearing loss. J. Assoc. Res. Otolaryngol. 2012. 13. 703-713. doi: 10.1007/s10162-012-0332-5.

Ferrari R., Pedrazzi P., Algeri S., Agnati L.F., Zoli M. Subunit and region-specific decreases in nicotinic acetylcholine receptor mRNA in the aged rat brain. Neurobiol. Aging. 1999. 20. 37-46. doi: 10.1016/s0197-4580(99)00015-9.

Friedland D.R., Cederberg C., Tarima S. Audiometric pattern as a predictor of cardiovascular status: Development of a model for assessment of risk. Laryngoscope. 2009. 119(3). 473-86. DOI: 10.1002/lary.20130.

Gates G.A., Mills J.H. Presbycusis. Lancet. 2005. 366. 1111-1120. doi: 10.1016/S0140-6736(05)67423-5.

Gavrilova S.I., Kolykhalov I.V., Ponomareva E.V., Fedorova Y.B., Selezneva N.D. Clinical efficacy and safety of choline alfoscerate in the treatment of late-onset cognitive impairment. Zhurnal Nevrologii i Psikhiatrii Imeni S.S. Korsakova. 2018. 118(5). 45-53. https://doi.org/10.17116/jnevro20181185145.

Gina Na, Sang Hyun Kwak, Seung Hyun Jang, Hye Eun Noh, Jungghi Kim, Seung Joon Yang, Jinsei Jung. Alfoscerateon Speech Recognitionin Patients With Age-Related Hearing Loss: A Prospective Study in 34 Patients (57 Ears). Frontiers in Aging Neuroscience. 2021. 13. 1-8. doi: 10.3389/fnagi.2021.684519.

Ginsberg S.D., Alldred M.J., Counts S.E., Cataldo A.M., Neve R.L., Jiang Y., Che S. Microarray analysis of hippocampal CA1 neurons implicates early endosomal dysfunction during Alzheimer’s disease progression. Biological. Psychiatry. 2010. 68(10). 885-893. https://doi.org/10.1016/j.biopsych.2010.05.030.

Glowatzki E., Fuchs P.A. Cholinergic synaptic inhibition of inner hair cells in the neonatal mammalian cochlea. Science. 2000. 288. 2366-2368. doi: 10.1126/science.288.5475.2366.

Grothe M.J., Schuster C., Bauer F., Heinsen H., Prudlo J., Teipel S.J. Atrophy of the cholinergic basal forebrain in dementia with lewy bodies and Alzheimer’s disease dementia. J. Neurol. 2014. 261. 1939-1948. doi: 10.1007/s00415-014-7439-z.

Guillery R.W., Feig S.L., Lozsadi D.A. Paying attention to the thalamic reticular nucleus. Trends Neurosci. 1998. 21. 28-32. doi: 10.1016/s0166-2236(97)01157-0.

Haam J., Yakel J.L. Cholinergic modulation of the hippocampal region and memory function. J. Neurochem. 2017. 142(suppl. 2). 111-121. doi: 10.1111/jnc.14052.

Humes L.E., Dubno J.R., Gordon-Salant S., Lister J.J., Cacace A.T., Cruickshanks K.J. et al. Central presbycusis: a review and evaluation of the evidence. J. Am. Acad. Audiol. 2012. 23. 635-666. doi: 10.3766/jaaa.23.8.5.

Husain F.T., Medina R.E., Davis C.W., Szymko-Bennett Y., Simonyan K., Pajor N.M. et al. Neuroanatomical changes due to hearing loss and chronic tinnitus: a combined VBM and DTI study. Brain Res. 2011. 1369. 74-88. doi: 10.1016/j.brainres.2010.10.095.

Jastreboff P.J. Fantom auditor perception (tinnitus), mechanisms of generation and perception. Neurosci. Res. 1990. 8. 221-254.

Krog N.H., Engdahl B., Tambs K. The association between tinnitus and mental health in a general population sample: results from the HUNT Study. J. Psychom. Res. 2003. 6. 289-298.

Kumar S., Joseph S., Gander P.E., Barascud N., Hal­pern A.R., Griffiths T.D. A brain system for auditory working me-mory. J. Neurosci. 2016. 36. 4492-4505. doi: 10.1523/JNEUROSCI.4341-14.2016.

Lazard D.S., Giraud A.L., Gnansia D., Meyer B., Sterkers O. Understanding the deafened brain: implications for cochlear implant rehabilitation. Eur. Ann. Otorhinolaryngol. Head Neck. Dis. 2012. 129. 98-103. doi: 10.1016/j.anorl.2011.06.001.

Lee H.J., Lee J.M., Choi J.Y., Jung J. Evaluation of maximal speech intelligibility with vibrant soundbridge in patients with sensorineural hearing loss. Otol. Neurotol. 2017. 38. 1246-1250. doi: 10.1097/MAO.0000000000001537.

Lee M., Choi B.Y., Suh S.W. Unexpected effects of acetylcholine precursors on pilocarpine seizure- induced neuronal death. Current Neuropharmacology. 2018. 16(1). 51-58. https://doi.org/10. 2174/1570159X15666170518150053.

Lee S.H., Choi B.Y., Kim J.H., Kho A.R., Sohn M., Song H.K., Suh S.W. et al. Late treatment with choline alfoscerate (l-alpha glycerylphosphorylcholine, α-GPC) increases hippocampal neurogenesis and provides protection against seizure-induced neuronal death and cognitive impairment. Brain Research. 2017. 1654(Pt A). 66-76. https://doi.org/10.1016/j.brainres.2016.10.011.

Livingston G., Huntley J., Sommerlad A., Ames D., Ballard C., Banerjee S. et al. Dementia prevention, intervention, and care: 2020 report of the lancet commission. Lancet. 2020. 396. 413-446. doi: 10.1016/S0140-6736(20)30367-6.

Catanesi M., d’Angelo M., Antonosante A. et al. Neuroprotective potential of choline alfoscerate against β-Amyloid injury: involvement of neurotrophic signals. Cell. Biol. Int. 2020. 1-11. DOI: 10.1002/cbin.11369.

Møller A.R., Langguth B., Ridder D.D., Kleinjung T. Textbook of tinnitus. New York: Springer, 2011.

Murphy C.F.B., Rabelo C.M., Silagi M.L., Mansur L.L., Bamiou D.E., Schochat E. Auditory processing performance of the middle-aged and elderly: auditory or cognitive decline? J. Am. Acad. Audiol. 2018. 29. 5-14. doi: 10.3766/jaaa.15098.

Nitsch R., Pittas A., Blusztajn J.K., Slack B.E., Growdon J.H., Wurtman R.J. Alterations of phospholipid metabolites in postmortem brain from patients with Alzheimer’s disease. Annals of the New York Academy of Sciences. 1991. 640. 110-113. https://doi.org/10.1111/j.1749-6632.1991.tb00200.x.

Norena A.J. Revisiting the cochlear and central mechanisms of tinnitus and therapeutic approaches. Audiol. Neurotol. 2015. 20. 53-59.

Novak M.A. Hearing loss in neurotologic diagnosis. In: Neurotology by Jackler R.K., Brackmann D.E. Copyright by Mosby, 1994. 131-44.

Panza F., Solfrizzi V., Logroscino G. Age-related hearing impairment-a risk factor and frailty marker for dementia and AD. Nat. Rev. Neurol. 2015. 11. 166-175. doi: 10.1038/nrneurol.2015.12.

Parnetti L., Abate G., Bartorelli L., Cucinotta D., Cuzzupoli M., Maggioni M., Senin U. et al. Multicentre study of l-alpha-gly­ceryl-phosphorylcholine vs ST200 among patients with probable senile dementia of Alzheimer’s type. Drugs & Aging. 1993. 3(2). 159-164. https://doi.org/10.2165/00002512-199303020-00006.

Peng S., Wuu J., Mufson E.J., Fahnestock M. Precursor form of brain-derived neurotrophic factor and mature brain-derived neurotrophic factor are decreased in the pre-clinical stages of Alzheimer’s disease. Journal of Neurochemistry. 2005. 93(6). 1412-1421. https://doi.org/10.1111/j.1471-4159.2005.03135.x.

Richardson B.D., Sottile S.Y., Caspary D.M. Mechanisms of GABAergic and cholinergic neurotransmission in auditory thalamus: Impact of aging. Hear. Res. 2020. 402. 108003. doi: 10.1016/j.heares.2020.108003.

Ronnberg J., Lunner T., Zekveld A., Sorqvist P., Danielsson H., Lyxell B. et al. The Ease of Language Understanding (ELU) model: theoretical, empirical, and clinical advances. Front. Syst. Neurosci. 2013. 7. 31. doi: 10.3389/fnsys.2013.00031.

Ruan Q., Yu Z., Zhang W., Ruan J., Liu C., Zhang R. Choli-nergic hypofunction in presbycusis-related tinnitus with cognitive function impairment: emerging hypotheses. Front. Aging Neurosci. 2018. 10. 98. doi: 10.3389/fnagi.2018.00098.

Rudack C. et al. Vascular risk factors in sudden hearing loss. Thromb. Haemost. 2006. 95(3). 454-61. DOI: 10.1160/TH05-08-0554.

Sigala S., Imperato A., Rizzonelli P., Casolini P., Missale C., Spano P. L-alpha-glycerylphosphorylcholine antagonizes scopolamine-induced amnesia and enhances hippocampal cholinergic transmission in the rat. Eur. J. Pharmacol. 1992. 211. 351-358. doi: 10.1016/0014-2999(92)90392-h.

Sottile S.Y., Hackett T.A., Cai R., Ling L., Llano D.A., Caspary D.M. Presynaptic neuronal nicotinic receptors differentially shape select inputs to auditory thalamus and are negatively impacted by aging. J. Neurosci. 2017a. 37. 11377-11389. doi: 10.1523/JNEUROSCI.1795-17.2017.

Sottile S.Y., Ling L., Cox B.C., Caspary D.M. Impact of ageing on postsynaptic neuronal nicotinic neurotransmission in auditory thalamus. J. Physiol. 2017b. 595. 5375-5385. doi: 10.1113/JP274467.

Tang X., Zhu X., Ding B., Walton J.P., Frisina R.D., Su J. Age-related hearing loss: GABA, nicotinic acetylcholine and NMDA receptor expression changes in spiral ganglion neurons of the mouse. Neuroscience. 2014. 259. 184-193. doi: 10.1016/j.neuroscience.2013.11.058.

Tayebati S.K., Amenta F. Choline-containing phospholi-pids: Relevance to brain functional pathways. Clinical Chemistry and Laboratory Medicine. 2013. 51(3). 513-521. https://doi.org/10.1515/cclm-2012-0559.

Tayebati S.K., Di Tullio M.A., Tomassoni D., Amenta F. Neuroprotective effect of treatment with galantamine and choline alphoscerate on brain microanatomy in spontaneously hypertensive rats. Journal of the Neurological Sciences. 2009. 283(1–2). 187-194. https://doi.org/10.1016/j.jns.2009.02.349.

Teng H.K., Teng K.K., Lee R., Wright S., Tevar S., Almeida R.D., Hempstead B.L. et al. ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 2005. 25(22). 5455-5463. https://doi.org/10.1523/JNEUROSCI.5123-04.2005.

Van Camp G. et al. Nonsyndromic hearing impairment: unpa-ralleled heterogeneity. Am. J. Hum. Gen. 1997. 60. 758-64.

Wang Y., Guan X., Chen X., Cai Y., Ma Y., Ma J., Bai Y. et al. Choline supplementation ameliorates behavioral deficits and Alzheimer’s disease-like pathology in transgenic APP/PS1 mice. Molecular Nutrition & Food Research. 2019. 63(18). e1801407. https://doi.org/10.1002/mnfr.201801407.

Winslow R.L., Sachs M.B. Single-tone intensity discrimination based on auditory-nerve rate responses in backgrounds of quiet, noise, and with stimulation of the crossed olivocochlear bundle. Hear. Res. 1988. 35. 165-189. doi: 10.1016/0378-5955(88)90116-5.

Zhang H., Yoon S.-Y., Zhang H., Dougherty P.M. Evidence that spinal astrocytes but not microglia contribute to the pathogenesis of Paclitaxel-induced painful neuropathy. The Journal of Pain: Official Journal of the American Pain Society. 2012. 13(3). 293-303. https://doi.org/10.1016/j.jpain.2011.12.002.

Абдулкеримов Х.Т., Таварткиладзе Г.А., Цыганкова Е.Р., Бобошко М.Ю., Климанцев С.А. Нейросенсорная тугоухость. Клинические рекомендации. М. — СПб., 2014.

Беличева Э.Г., Линьков В.И. Генетическая обусловленность сосудистого фактора риска развития острой сенсоневральной тугоухости. Рос. оториноларингология. 2003. 2(5). 73-6.

Инструкция к применению препарата Глиатилин. № П N011966/01. 2007-12-17. Italfarmaco (Италия).

Крюков А.И., Кунельская Н.Л., Янюшкина Е.С., Байбакова Е.В., Чугунова М.А., Негребова М.М. Диагностика и медикаментозная терапия субъективного ушного шума. Методические рекомендации. М., 2017.

Кунельская Н.Л. Реабилитация пациентов с различными формами нейросенсорной тугоухости. РМЖ. 2011. 24. 1478.

Кунельская Н.Л., Байбакова Е.В., Янюшкина Е.С., Чугунова М.А., Тардов М.В., Заоева З.О., Изотова Г.Н., Ларионова Э.В. Использование препарата Глиатилин у больных с нейросенсорной тугоухостью. Вестник оториноларингологии. 2019. 84. 6. 132-136. https://doi.org/10.17116/otorino201984061132

Кунельская Н.Л., Полякова Т.С. Нейросенсорная туго-ухость. Принципы лечения. Вестник оториноларингологии. Приложение. 2006. 5. 161-163.

Левина М.А., Борзов Е.В., Ястребцева И.П. Кохлеарный синдром у пациентов в раннем восстановительном периоде первичного ишемического инсульта легкой степени тяжести. Вестн. Ивановской мед. академии. 2016. 21(3). 28-31.

Лопотко А.И., Бердникова И.П., Бобошко М.Ю. и др. Практическое руководство по сурдологии. СПб.: Диалог, 2008.

Морозова С.В., Кеда Л.А., Попова О.И. Преимущества комплексного лечения пациентов с сенсоневральной тугоухостью сосудистого генеза. Consilium Medicum. 2019. 21(11). 67-70.

Никулина Г.М., Рымша М.А. Прогностическое значение функции слуха на фоне ишемического инсульта. Вестник оториноларингологии. 2005. 4. 9-11.

Одинак М.М. Высокий уровень эффективности и безопасности делает Глиатилин препаратом выбора в лечении ХНМК. Обозрение психиатрии и медицинской психологии им. В.М. Бехтерева. 2015. 2. 101-2.

Сенсоневральная тугоухость у взрослых. Клинические рекомендации. Национальная медицинская ассоциация оториноларингологов. 2016. 3-26.

Таварткиладзе Г.А. Функциональные методы исследования слухового анализатора. В кн.: Оториноларингология. Национальное руководство. Под ред. В.Т. Пальчуна. М.: ГЭОТАР-Медиа, 2008. Гл. 5. 113-49.

Published

2022-03-31

How to Cite

Trishchynska, M., & Kononov, O. (2022). Treatment of sensorineural hearing loss of vascular genesis and age-related hearing loss. INTERNATIONAL NEUROLOGICAL JOURNAL, 18(1), 63–70. https://doi.org/10.22141/2224-0713.18.1.2022.931

Issue

Section

Original Researches