DOI: https://doi.org/10.22141/2224-0713.1.87.2017.96533

The effect of NeurogelTM with xenogenic neural crest stem cells implantation on the course of spasticity syndrome after experimental spinal cord injury

V.I. Tsymbaliuk, V.V. Medvediev, R.G. Vasiliev, O.A. Rybachuk, V.I. Kozyavkin, N.G. Draguntsova

Abstract


The aim of the study was to examine NeuroGelTM with xenogenic neural crest stem cells (NCSC) implantation on the rat’s paretic hind limb spasticity dynamics after experimental spinal cord injury. Materials and methods. Animals: outbred albino rats (5.5 months, 250 g); experimental groups: 1 — spinal cord injury only (males; n = 16); 2 — spinal cord injury + immediate homotopical transplantation of NeuroGelTM (males; n = 20); 3 — spinal cord injury + analogous transplantation of NeuroGelTM in association with adult mouse NCSC (n = 12). Group 3 consisted of male (n = 6) and female (n = 6) animals — subgroups 3m and 3f, respectively. Model of injury — left-side spinal cord hemisection at Т11; the duration of observation — 28 weeks; ipsilateral hindlimb (IHL) function indicator (FI) and spasticity indicator (SI) determination — the Вasso-Вeattie-Вresnahan scale and Ashworth scale, respectively. Results. At the 28th week, in the group 1 IHL SI was 2.5 ± 0.4 points, in group 2 — 1.7 ± 0.2 points, in group 3 — 1.6 ± 0.3 points, in a subgroup 3m — 1.6 ± 0.5 points, in a subgroup 3f — 1.7 ± 0.3 points of Ashworth scale. Significant (p < 0.05) differences between the IHL SI in the group 1 and group 2 were noted at the 7th day, 5th–7th and 12th–24th weeks, between IHL FI in the group 1 and group 3 — at the 2nd, 4th–7th and 20th weeks. The maximum prevalence of group 3 IHL FI over the group 2 IHL FI was observed at the 7th day (р = 0.13). Significant difference between IHL FI in the subgroup 3m and group 2 and between IHL FI in the subgroup 3m and group 3f was found at the 1st–2nd week. Difference between IHL FI in the subgroup 3m and group 3f was maximal during 3rd month (0.83 points of the Ashworth scale; р = 0.124). Dynamics of the group 2 IHL FI and group 3 IHL FI differs by the presence of significant growth on the 3rd, 7th week, 4th and 5th month. Unlike group 1, in group 2 and group 3 a negative correlation was observed between individual IHL FI and SI values in each of the observation terms combined with the strong positive correlation between average IHL FI and SI values along the observation period. Conclusions. NCSC xenotransplantation in association with NeuroGelTM does not change the level of spasticity compared to the implantation of NeuroGelTM only, but significantly alters its dynamics, with the trend towards worsening in the remote period of injury in the case of different donor and recipient sexes.


Keywords


spinal cord injury; spastisity syndrome; restorative neurosurgery; tissue neuroengineering; artificial tissue scaffold; neural crest stem cells

References


Lance J.W. The control of muscle tone, reflexes, and movement: Robert Wartenberg Lecture [Text] / J.W. Lance // Neuro­logy. — 1980. — Vol. 30, № 12. — P. 1303-1313.

Nielsen J.B. The spinal pathophysiology of spasticity — from a basic science point of view / J.B. Nielsen, C. Crone, H. Hultborn // Acta Physiol. (Oxf.). — 2007. — Vol. 189, № 2. — P. 171-180.

Spasticity: Clinical perceptions, neurological realities and meaningful measurement [Text] / A.D. Pandyan et al. // Disabil. Rehabil. — 2005. — Vol. 27, № 1–2. — P. 2-6.

Recovery of neuronal and network excitability after spinal cord injury and implications for spasticity [Text] / J.M. D’Amico et al. // Front. Int. Neurosci. — 2014. — Vol. 8, Article 36. — P. 1-24,

doi: 10.3389/fnint.2014.00036.

Heckman C.J. Persistent inward currents in motoneuron dendrites: implications for motor output [Text] / C.J. Heckman, M.A. Gorassini, D.J. Bennett // Muscle Nerve. — 2005. — Vol. 31, № 2. — P. 135-156.

Global gene expression analysis of rodent motor neurons following spinal cord injury associate molecular mechanisms with development of post-injury spasticity [Text] / J. Wienecke et al. // J. Neurophysiol. — 2010. — Vol. 103, № 2. — P. 761-778.

Spinal shock revisited: a four-phase model [Text] / J.F. Ditunno et al. // Spinal Cord. — 2004. — Vol. 42, № 7. — P. 383-395.

The time course of serotonin 2C receptor expression after spinal transection of rats: an immunohistochemical study [Text] / L.-Q. Ren et al. // Neuroscience. — 2013. — Vol. 236. — P. 31-46.

Recovery of motoneuron and locomotor function after spinal cord injury depends on constitutive activity in 5-HT2C receptors [Text] / K.C. Murray et al. // Nature Med. — 2010. — Vol. 16, № 6. — P. 694-701.

Decrease of mRNA editing after spinal cord injury is caused by down-regulation of ADAR2 that is triggered by inflammatory response [Text] / A.F. Di Narzo et al. // Sci. Rep. — 2015. — Vol. 5, Article 12615. — P. 1-15, doi: 10.1038/srep12615.

Serotonergic transmission after spinal cord injury [Text] / R. Nardone et al. // J. Neural. Transm. (Vienna). — 2015. — Vol. 122, № 2. — P. 279-295, doi 10.1007/s00702-014-1241-z.

Regulation of serotonin-2C receptor G-protein coupling by RNA editing [Text] / C.M. Burns et al. // Nature. — 1997. — Vol. 387, № 6630. — P. 303-308.

RNA editing of the human serotonin 5-hydroxytryptamine 2C receptor silences constitutive activity [Text] / C.M. Niswender et al. // J. Biol. Chem. — 1999. — Vol. 274, № 14. — P. 9472-9478.

New insights into the biological role of mammalian ADARs; the RNA editing proteins [Text] / N. Mannion et al. // Biomolecules. — 2015. — Vol. 5, № 4. — P. 2338-2362, doi:10.3390/biom5042338.

Concise review: spinal cord injuries — how could adult mesenchymal and neural crest stem cells take up the challenge? [Text] / V. Neirinckx et al. // Stem. Cells. — 2014. — Vol. 32, № 4. — P. 829-843, doi: 10.1002/stem.1579.

Oliveri R.S. Mesenchymal stem cells improve locomotor recovery in traumatic spinal cord injury: systematic review with meta-analyses of rat models [Text] / R.S. Oliveri, S. Bello, F. Biering-Sørensen // Neurobiol. Dis. — 2014. — Vol. 62. — P. 338-353, doi: 10.1016/j.nbd.2013.10.014.

Potential of olfactory ensheathing cells from different sources for spinal cord repair [Text] / A. Mayeur et al. // PLoS ONE. — 2013. — Vol. 8, № 4. — P. 1-12, doi:10.1371/journal.pone.0062860.

Reconstruction of the transected cat spinal cord following NeuroGel implantation: axonal tracing, immunohistochemical and ultrastructural studies [Text] / S. Woerly et al. // Int. J. Dev.

Neurosci. — 2001. — Vol. 19, № 1. — Р. 63-83.

Модель пересічення половини поперечника спинного мозку. І. Технічні, патоморфологічні та клініко-експериментальні особливості [Текст] / В.І. Цимбалюк та ін. // Укр. нейрохірург. журнал. — 2016. — № 2. — С. 18-27.

A Sensitive and Reliable Locomotor Rating Scale for Open Field Testing in Rats [Text] / D.M. Basso, M.S. Beattie, J.C. Bresnahan // J. Neurotrauma. — 1995. — Vol. 12, № 1. — P. 1-21.

Модель поперечного пересічення половини спинного мозку. Частина ІІ. Стан нервово-м’язового апарату, синдром посттравматичної спастичності та хронічний больовий синдром [Текст] / В.І. Цимбалюк та ін. // Укр. нейрохірург. журнал. — 2016. — № 3. — С. 5-13.

Clinical impact of H-Y alloimmunity [Text] / Popli R., Sahaf B., Nakasone H. et al. // Immunol. Res. — 2014. — Vol. 58, № 2–3. — P. 249-258, doi: 10.1007/s12026-014-8514-3.

Spierings E. Minor histocompatibility antigens: past, present, and future [Text] / E. Spierings // Tissue Antigens. — 2014. — Vol. 84, № 4. — P. 347-360, doi: 10.1111/tan.12445.




Copyright (c) 2017 INTERNATIONAL NEUROLOGICAL JOURNAL

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

© Publishing House Zaslavsky, 1997-2018

 

   Seo анализ сайта