DOI: https://doi.org/10.22141/2224-0713.7.85.2016.86913

The Effect of NeurogelTM Used with Bone Marrow Stem Cells Implantation on the Course of the Spasticity Syndrome after Experimental Spinal Cord Injury

V.I. Tsymbaliuk, V.V. Medvediev, O.A. Rybachuk, V.I. Kozyavkin, N.G. Draguntsova

Abstract


Objective. To examine NeuroGelTM with bone marrow stem cells (BMSC) implantation on the dynamics of rat’s paretic hind limb spasticity after experimental spinal cord injury. Materials and methods. Animals: outbred albino rats (male, 5.5 months, 250 g); experimental groups: 1 — spinal cord injury (n = 16); 2 — spinal cord injury + immediate homotopical transplantation of NeuroGelTM (n = 20); 3 — spinal cord injury + analogous transplantation of NeuroGelTM in association with adult mouse BMSC (n = 16). The model of injury was left-side spinal cord hemisection at Т11; the duration of observation was 28 weeks; the ipsilateral hind limb (IHL) function indicator (FI) and spasticity indicator (SI) were determined by the Вasso — Вeattie — Вresnahan scale (BBB) and Ashworth scale, respectively. Results. At the 28th week of the experiment IHL SI in group 1 was 2.5 ± 0.4 points at Ashworth scale, in group 2 and 3 — 1.7 ± 0.2 and 1.7 ± 0.3, respectively. Significant difference between the values of the IHL SI in groups 1 and 2 was found on the 7th day, during 5–7th and 12–24th week, between groups 1 and 3 — on the 7th day, during the 7–8th and at the 16th week. The maximum difference between groups 2 and 3 IHL SI value was observed at the 12th week (р = 0.059). The dynamics of IHL SI average value in groups 2 and group 3 was similar, except for the lack of significant growth during the 3rd week, and the presence of significant growth during the 3–4th months. Unlike group 1, in groups 2 and 3 there was observed negative correlation between individual IHL FI and SI values in each of the observation terms combined with the strong positive correlation between these values along the observation period. Conclusion. BMSC xenotransplantation using the NeuroGelTM does not lead to significant changes in the spasticity level compared to the isolated implantation using the NeuroGelTM, but significantly alters the dynamic pattern of spinal injury complications.


Keywords


spinal cord injury; spasticity syndrome; restorative treatment; tissue neuroengineering; artificial tissue scaffold; bone marrow stem cells

References


Prevalence and treatment of spasticity reported by multiple sclerosis patients / M.A. Rizzo, O.C. Hadjimichael, J. Preiningerova, T.L. Vollmer // Mult. Scler. — 2004. — ​Vol. 10, № 5. — ​P. 589-595.

Spasticity after stroke: its occurrence and association with motor impairments and activity limitations / D.K. Sommerfeld et al. // Stroke. — 2004. — ​Vol. 35, № 1. — ​P. 134-139.

Odding E. The epidemiology of cerebral palsy: incidence, impairments and risk factors / E. Odding, M.E. Roebroeck, H.J. Stam // Disabil. Rehabil. — 2006. — ​Vol. 28, № 4. — ​P. 183-191.

Maynard F.M. Epidemiology of spasticity following traumatic spinal cord injury / F.M. Maynard, R.S. Karunas, W.P. Waring // Arch. Phys. Med. Rehabil. — 1990. — ​Vol. 71, № 8. — ​P. 566-569.

Skold C. Spasticity after traumatic spinal cord injury: nature, severity, and location [Text] / C. Skold, R. Levi, A. Seiger // Phys. Med. Rehabil. — 1999. — ​Vol. 80, № 12. — ​P. 1548-1557.

A database of self-reported secondary medical problems among VA spinal cord injury patients: its role in clinical care and management [Text] / J.S. Walters et al. // J. Rehabil. Res. Dev. — 2002. — ​Vol. 39, № 1. — ​P. 53-61.

Spasticity, an impairment that is poorly defined and poorly measured / S. Malhotra, A.D. Pandyan, C.R. Day, P.W. Jones, H. Hermens // Clin. Rehabil. — 2009. — ​Vol. 23, № 7. — ​P. 651-658.

Longitudinal changes in medical complications in adults with pediatric-onset spinal cord injury / M. Hwang, K. Zebracki, K.M. Chlan, L.C. Vogel // J. Spinal Cord Med. — 2014. — ​Vol. 37, № 2. — ​P. 171-178.

Incidence and predictors of contracture after spinal cord injury — ​a prospective cohort study / J. Dion et al. // Spinal Cord. — 2012. — ​Vol. 50, № 8. — ​P. 579-584.

Adams M. International campaign for cures of spinal cord injury paralysis (ICCP): another step forward for spinal cord injury research [Text] / M. Adams, J.F. Cavanagh // Spinal Cord. — 2004. — ​Vol. 42, № 5. — ​P. 273-280.

Nielsen J.B. The spinal pathophysiology of spasticity — ​from a basic science point of view / J.B. Nielsen, C. Crone, H. Hultborn // Acta Physiol. (Oxf.) — ​2007. — ​Vol. 189, № 2. — ​P. 171-180.

Heckman C.J. Persistent inward currents in motoneuron dendrites: implications for motor output [Text] / C.J. Heckman, M.A. Gorassini, D.J. Bennett // Muscle Nerve. — 2005. — ​Vol. 31, № 2. — ​P. 135-156.

Recovery of neuronal and network excitability after spinal cord injury and implications for spasticity [Text] / J.M. D’Amico, E.G. Condliffe, K.J.B. Martins et al. // Front. Int. Neurosci. — 2014. — ​Vol. 8, Art. 36. — ​P. 1-24.

Global gene expression analysis of rodent motor neurons following spinal cord injury associate molecular mechanisms with development of post — ​injury spasticity [Text] / J. Wienecke et al. // J. Neurophysiol. — 2010. — ​Vol. 103, № 2. — ​P. 761-778.

Spinal shock revisited: a four-phase model [Text] / J.F. Ditunno et al. // Spinal Cord. — 2004. — ​V. 42, № 7. — ​P. 383-395.

The time course of serotonin 2C receptor expression after spinal transection of rats: an immunohistochemical study [Text] / L-Q. Ren et al. // Neuroscience. — 2013. — ​Vol. 236. — ​P. 31-46.

Recovery of motoneuron and locomotor function after spinal cord injury depends on constitutive activity in 5-HT2C receptors [Text] / K.C. Murray, A. Nakae, M.J. Stephens et al. // Nature Med. — 2010. — ​Vol. 16, № 6. — ​P. 694-701.

Decrease of mRNA editing after spinal cord injury is caused by down-regulation of ADAR2 that is triggered by inflammatory response [Text] / A.F. Di Narzo, A. Kozlenkov, Y. Ge et al. // Sci. Rep. — 2015. — ​Vol. 5, Art. 12615. — ​P. 1-15.

Serotonergic transmission after spinal cord injury [Text] / R. Nardone, Y. Holler, A. Thomschewski et al. // J. Neural. Transm. (Vienna). — 2015. — ​Vol. 122, № 2. — ​P. 279-295.

Regulation of serotonin‑2C receptor G-protein coupling by RNA editing [Text] / C.M. Burns et al. // Nature. — 1997. — ​Vol. 387, № 6630. — ​P. 303-308.

RNA editing of the human serotonin 5-hydroxytryptamine 2C receptor silences constitutive activity [Text] / C.M. Niswender, S.C. Copeland, K. Herrick-Davis et al. // J. Biol. Chem. — 1999. — ​Vol. 274, № 14. — ​P. 9472-9478.

Oliveri R.S. Mesenchymal stem cells improve locomotor recovery in traumatic spinal cord injury: Systematic review with meta-analyses of rat models [Text] / R.S. Oliveri, S. Bello, F. Biering-Sørensen // Neurobiol. Dis. — 2014. — ​Vol. 62. — ​P. 338-353.

Clinical observation of fetal olfactory ensheathing glia transplantation (OEGT) in patients with complete chronic spinal cord injury [Text] / J. Wu et al. // Cell. Transplant. — 2012. — ​Vol. 21, Suppl. 1. — ​P. 33-37.

Amelioration of motor/sensory dysfunction and spasticity in a rat model of acute lumbar spinal cord injury by human neural stem cell transplantation [Text] / S. van Gorp et al. // Stem Cell. Res. Ther. — 2013. — ​Vol. 4, Article 57. — ​P. 1-22.

Spinal cord reconstruction using NeuroGel implants and functional recovery after chronic injury [Text] / S. Woerly et al. // J. Neurosci. Res. — 2001. — ​Vol. 66, № 6. — ​Р. 1187-1197.

Reconstruction of the transected cat spinal cord following NeuroGel implantation: axonal tracing, immunohistochemical and ultrastructural studies [Text] / S. Woerly et al. // Int. J. Dev. Neurosci. — 2001. — ​Vol. 19, № 1. — ​Р. 63-83.

Spinal cord repair with PHPMA hydrogel containing RGD peptides (NeuroGel) [Text] / S. Woerly et al. // Biomaterials. — 2001. — ​Vol. 22, № 10. — ​Р. 1095-1111.

Prevention of gliotic scar formation by NeuroGel allows partial endogenous repair of transected cat spinal cord [Text] / S. Woerly et al. // J. Neurosci. Res. — 2004. — ​Vol. 75, № 2. — ​P. 262-272.

Expression of heat shock protein (HSP)-25 and HSP‑32 in the rat spinal cord reconstructed with NeuroGel [Text] / S. Woerly et al. // Neurochem. Res. — 2005. — ​Vol. 30, № 6–7. — ​P. 721-735.

Цымбалюк В.И. Спинной мозг. Элегия надежды: Монография [Текст] / В.И. Цымбалюк, В.В. Медведев. — ​Винница: Новая Книга, 2010. — 944 с.

Модель пересічення половини поперечника спинного мозку. І. Технічні, патоморфологічні та клініко-експериментальні особливості [Текст] / В.І. Цимбалюк та ін. // Укр. нейрохірург. журнал. — 2016. — № 2. — ​С. 18-27.

Basso D.M. A sensitive and reliable locomotor rating scale for open field testing in rats [Text] / D.M. Basso, M.S. Beattie, J.C. Bresnahan // J. Neurotrauma. — 1995. — ​Vol. 12, № 1. — ​P. 1-21.

Модель поперечного пересічення половини спинного мозку. Частина ІІ. Стан нервово-м’язового апарату, синдром посттравматичної спастичності та хронічний больовий синдром [Текст] / В.І. Цимбалюк та ін. // Укр. нейрохірург. журнал. — 2016. — № 3. — ​С. 5-13.




Copyright (c) 2017 INTERNATIONAL NEUROLOGICAL JOURNAL

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

© Publishing House Zaslavsky, 1997-2018

 

   Seo анализ сайта