Modern aspects of neuropathogenesis and neurological manifestations of COVID-19

Authors

  • L.A. Dziak SI “Dnipropetrovsk Medical Academy of MH of Ukraine”, Dnipro, Ukraine, Ukraine
  • O.S. Tsurkalenko SI “Dnipropetrovsk Medical Academy of MH of Ukraine”, Dnipro, Ukraine, Ukraine
  • K.V. Chekha SI “Dnipropetrovsk Medical Academy of MH of Ukraine”, Dnipro, Ukraine, Ukraine
  • V.M. Suk SI “Dnipropetrovsk Medical Academy of MH of Ukraine”, Dnipro, Ukraine, Ukraine

DOI:

https://doi.org/10.22141/2224-0713.17.2.2021.229887

Keywords:

SARS-CoV-2, COVID-19, neuroinvasion, neuroinflammation, neurotropy, neurologic complications, inflammatory response, protein S

Abstract

Coronavirus infection is a systemic pathology resulting in impairment of the nervous system. The involvement of the central nervous system in COVID-19 is diverse by clinical manifestations and main mechanisms. The mechanisms of interrelations between SARS-CoV-2 and the nervous system include a direct virus-induced lesion of the central nervous system, inflammatory-mediated impairment, thrombus burden, and impairment caused by hypoxia and homeostasis. Due to the multi-factor mechanisms (viral, immune, hypoxic, hypercoagulation), the SARS-CoV-2 infection can cause a wide range of neurological disorders involving both the central and peripheral nervous system and end organs. Dizziness, headache, altered level of consciousness, acute cerebrovascular diseases, hypogeusia, hyposmia, peripheral neuropathies, sleep disorders, delirium, neuralgia, myalgia are the most common signs. The structural and functional changes in various organs and systems and many neurological symptoms are determined to persist after COVID-19. Regardless of the numerous clinical reports about the neurological and psychiatric symptoms of COVID-19 as before it is difficult to determine if they are associated with the direct or indirect impact of viral infection or they are secondary to hypoxia, sepsis, cytokine reaction, and multiple organ failure. Penetrated the brain, COVID-19 can impact the other organs and systems and the body in general. Given the mechanisms of impairment, the survivors after COVID-19 with the infection penetrated the brain are more susceptible to more serious diseases such as Parkinson’s disease, cognitive decline, multiple sclerosis, and other autoimmune diseases. Given the multi-factor pathogenesis of COVID-19 resulting in long-term persistence of the clinical symptoms due to impaired neuroplasticity and neurogenesis followed by cholinergic deficiency, the usage of Neuroxon® 1000 mg a day with twice-day dosing for 30 days. Also, a long-term follow-up and control over the COVID-19 patients are recommended for the prophylaxis, timely determination, and correction of long-term complications.

References

Rothan H.A., Byrareddy S.N. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J. Autoimmun. 2020. 109. 102433.

Rothan H.A., Acharya A., Reid S.P., Kumar M., Byrared-dy S.N. Molecular Aspects of COVID-19 Differential Pathogenesis. Pathogens. 2020. 9. 538.

Mao L., Jin H., Wang M. et al. Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol. 2020. 77(6). 683-690. doi: 10.1001/jamaneurol.2020.1127.

Espinosa P.S., Rizvi Z., Sharma P., Hindi F., Filatov A. Neurological Complications of Coronavirus Disease (COVID-19): Encephalopathy, MRI Brain and Cerebrospinal Fluid Findings: Case 2. Cureus. 2020. 12. e7930.

Filatov A., Sharma P., Hindi F., Espinosa P.S. Neurological Complications of Coronavirus Disease (COVID-19): Encephalopathy. Cureus. 2020. 12. e7352.

Heneka M.T., Golenbock D., Latz E., Morgan D., Brown R. Immediate and long-term consequences of COVID-19 infections for the development of neurological disease. Alzheimer’s Res. Ther. 2020. 12. 69.

Mahammedi A., Saba L., Vagal A., Leali M., Rossi A., Gaskill M., Sengupta S., Zhang B., Carriero A., Bachir S. et al. Imaging in Neurological Disease of Hospitalized COVID-19 Patients: An Italian Multicenter Retrospective Observational Study. Radiology. 2020. 297. E270-E273.

Parry A.H., Wani A.H., Yaseen M. Neurological Dysfunction in Coronavirus Disease-19 (COVID-19). Acad. Radiol. 2020. 27. 1329-1330.

Baig A.M., Sanders E.C. Potential neuroinvasive pathways of SARS-CoV-2: Deciphering the spectrum of neurological deficit seen in coronavirus disease-2019 (COVID-19). J. Med. Virol. 2020. 92. 1845-1857.

Adamczyk-Sowa M., Niedziela N., Kubicka-Baczyk K., Wierzbicki K., Jaroszewicz J., Sowa P. Neurological symptoms as a clinical manifestation of COVID-19: Implications for internists. Polish Arch. Intern. Med. 2020.

Wang H.Y., Li X.L., Yan Z.R., Sun X.P., Han J., Zhang B.W. Potential neurological symptoms of COVID-19. Ther. Adv. Neurol. Disord. 2020. 13. 1756286420917830.

Kumari P., Rothan H.A., Natekar J.P., Stone S., Pathak H., Strate P.G., Arora K., Brinton M.A., Kumar M. Neuroinvasion and Encephalitis Following Intranasal Inoculation of SARS-CoV-2 in K18-hACE2 Mice. Viruses. 2021 Jan 19. 13(1). 132. doi: 10.3390/v13010132. PMID: 33477869; PMCID: PMC7832889.

Kanjanaumporn J., Aeumjaturapat S., Snidvongs K., Seresirikachorn K., Chusakul S. Smell and taste dysfunction in patients with SARS-CoV-2 infection: A review of epidemiology, pathogenesis, prognosis, and treatment options. Asian Pac. J. Allergy Immunol. 2020. 38. 69-77.

Cantuti-Castelvetri L., Ojha R. et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science. 2020. 370. 856-860.

Perlman S., Evans G., Afifi A. Effect of olfactory bulb ablation on spread of a neurotropic coronavirus into the mouse brain. J. Exp. Med. 1990. 172. 1127-1132.

Netland J., Meyerholz D.K., Moore S., Cassell M., Perlman S. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J. Virol. 2008. 82. 7264-7275. DOI: 10.1128/JVI.00737-08.

Dube M., Le Coupanec A., Wong A.H.M., Rini J.M., Desforges M., Talbot P.J. Axonal Transport Enables Neuron-to-Neuron Propagation of Human Coronavirus OC43. J. Virol. 2018. 92. e00404-e00418.

Lu R., Zhao X., Li J., Niu P., Yang B., Wu H. et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020. 395. 565-74

van Riel D., Verdijk R., Kuiken T. The olfactory nerve: A shortcut for influenza and other viral diseases into the central nervous system. J. Pathol. 2015. 235. 277-287.

Blinzinger K., Anzil A.P. Neural route of infection in viral di-seases of the central nervous system. Lancet. 1974. 2. 1374-1375.

Durrant D.M., Ghosh S., Klein R.S. The Olfactory Bulb: An Immunosensory Effector Organ during Neurotropic Viral Infections. ACS Chem. Neurosci. 2016. 7. 464-469.

De Santis G. SARS-CoV-2: A new virus but a familiar inflammation brain pattern. Brain, Behavior, and Immunity. 2020. 87. 95-96.

Armocida D., Pesce A., Raponi I., Pugliese F., Valentini V., Santoro A., Berra L.V. Anosmia in COVID-19: severe acute respiratory syndrome coronavirus 2 through the nasoliary epithelium and a possible spreading way to the central nervous system — A purpose to study. Neurosurgery. 2020. https://doi.org/10.1093/neuros/nyaa204.

Mahalaxmi I., Kaavya J., Mohana Devi S., Balachandar V. COVID-19 and olfactory dysfunction: A possible associative approach towards neurodegenerative diseases. J. Cell. Physiol. 2021. 236. 763-770. https://doi.org/10.1002/jcp.29937.

Alquisiras-Burgos I., Peralta-Arrieta I., Alonso-Palomares L.A. et al. Neurological Complications Associated with the Blood-Brain Barrier Damage Induced by the Inflammatory Response During SARS-CoV-2 Infection. Mol. Neurobiol. 2021. 58. 520-535. https://doi.org/10.1007/s12035-020-02134-7.

Keaney J., Campbell M. The dynamic blood-brain barrier. FEBS J. 2015. 282(21). 4067-4079. https://doi.org/10.1111/febs.13412.

Rhea E.M., Logsdon A.F., Hansen K.M. et al. The S1 protein of SARS-CoV-2 crosses the blood-brain barrier in mice. Nat. Neurosci. 2020. https://doi.org/10.1038/s41593-020-00771-8.

Buzhdygan T.P., DeOre B.J., Baldwin-Leclair A., Bul-lock T.A., McGary H.M., Khan J.A., Razmpour R., Hale J.F., Galie P.A., Potula R., Andrews A.M., Ramirez S.H. The SARS-CoV-2 spike protein alters barrier function in 2D static and 3D microfluidic in-vitro models of the human blood-brain barrier. Neurobiol. Dis. 2020 Dec. 146. 105131. doi: 10.1016/j.nbd.2020.105131. Epub 2020 Oct 11. PMID: 33053430; PMCID: PMC7547916.

Palasca O., Santos A., Stolte C., Gorodkin J., Jensen L.J. TISSUES 2.0: an integrative web resource on mammalian tissue expression. 2018. Database 2018, bay003.

Wrapp D., Wang N., Corbett K.S., Goldsmith J.A., Hsieh C.L., Abiona O., Graham B.S., McLellan J.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020. 367. 6483. DOI: 10.1126/science.abb2507.

Baig A.M., Khaleeq A., Ali U., Syeda H. Evidence of the ­COVID-19 Virus Targeting the CNS: Tissue Distribution, Host-Virus Interaction, and Proposed Neurotropic Mechanisms. ACS Chem. Neurosci. 2020 Apr 1. 11(7). 995-998. doi: 10.1021/acschemneuro.0c00122. Epub 2020 Mar 13. PMID: 32167747; PMCID: PMC7094171.

Lukiw W.J., Pogue A., Hill J.M. SARS-CoV-2 Infectivity and Neurological Targets in the Brain. Cellular and molecular neurobio-logy. 2020. doi: 10.1007/s10571-020-00947-7; doi:10.1007/s10571-020-00947-7.

Panariello F., Cellini L., Speciani M., De Ronchi D., Atti A.R. How Does SARS-CoV-2 Affect the Central Nervous System? A Wor-king Hypothesis. Front Psychiatry. 2020. 11. 582345. Published 2020 Nov 16. doi: 10.3389/fpsyt.2020.582345.

Shang J., Wan Y., Luo C., Ye G., Geng Q., Auerbach A. et al. Cell entry mechanisms of SARS-CoV-2. Proc. Natl Acad. Sci. USA. 2020. 117. 11727-34. doi: 10.1073/pnas.2003138117.

Li Y.-C., Bai W.-Z., Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J. Med. Virol. 2020. 92. 552-5. doi: 10.1002/jmv.25728.

Yan R., Zhang Y., Li Y., Xia L., Guo Y., Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. 2020. 367. 1444-8. doi: 10.1126/science.abb2762.

Bodro M., Compta Y., Sánchez-Valle R. Presentations and mechanisms of CNS disorders related to COVID-19. Neurol. Neuroimmunol. Neuroinflamm. 2020 Dec 11. 8(1). e923. doi: 10.1212/NXI.0000000000000923. PMID: 33310765; PMCID: PMC7808129.

Huang C., Wang Y., Li X. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020. 395. 497-506.

Henderson L.A., Canna S.W., Schulert G.S. et al. On the alert for cytokine storm: immunopathology in COVID-19. Arthritis Rheumatol. 2020. 72. 1059-1063.

Reichard R., Kashani K.B., Boire N.A., Constantopoulos E., Guo Y., Lucchinetti C.F. Neuropathology of COVID-19: a spectrum of vascular and acute disseminated encephalomyelitis (ADEM)-like pathology. Acta Neropathol. 2020. 140. 1-6.

Mehta P., McAuley D.F., Brown M., Sanchez E., Tattersall R.S., Manson J.J. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020. 395. 1033-1034.

Beyrouti R., Adams M.E., Benjamin L. et al. Characteristics of ischaemic stroke associated with COVID-19. J. Neurol. Neurosurg. Psychiatry. 2020. 91. 889-891.

Hess D.C., Eldahshan W., Rutkowski E. COVID-19-Related stroke. Transl. Stroke Res. 2020. 11. 322-325.

Helms J., Kremer S., Merdji H. et al. Neurologic features in severe SARS-CoV-2 infection. N. Engl. J. Med. 2020. 382. 2268-2270.

Richardson S., Hirsch J.S., Narasimhan M., et al. Presen­ting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA. 2020. 323. 2052-2059.

Al-Sarraj S., Troakes C., Hanley B., Osborn M., Richardson M.P., Hotopf M., Bullmore E., Everall I.P. Invited Review: The spectrum of neuropathology in COVID-19. Neuropathol. Appl. Neurobiol. 2021 Feb. 47(1). 3-16. doi: 10.1111/nan.12667. Epub 2020 Oct 20. PMID: 32935873.

Moriguchi T., Harii N., Goto J., Harada D., Sugawara H., Takamino J. et al. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. Int. J. Infect. Dis. 2020. 94. 55-8.

Huang Y.H., Jiang D., Huang J.T. SARS-CoV-2 detected in cerebrospinal fluid by PCR in a Case of COVID-19 Encephalitis. Brain Behav. Immun. 2020. 87. 149.

Dixon L., Varley J., Gontsarova A., Mallon D., Tona F., Muir D. et al. COVID-19-related acute necrotizing encephalopathy with brain stem involvement in a patient with aplastic anemia. Neurol. Neuroimmunol. Neuroinflamm. 2020. 7(5). e789.

Poyiadji N., Shahin G., Noujaim D., Stone M., Patel S., Griffith B. COVID-19-associated acute hemorrhagic necrotizing encephalopathy: CT and MRI features. Radiology. 2020. 201187.

Li Y., Wang M., Zhou Y., Chang J., Xian Y., Mao L. et al. Acute cerebrovascular disease following COVID-19: a single center, retrospective, observational study. Stroke Vasc. Neurol. 2020.

Lodigiani C., Iapichino G., Carenzo L., Cecconi M., Ferrazzi P., Sebastian T. et al. Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy. Thromb. Res. 2020. 191. 9-14.

Klok F.A., Kruip M., van der Meer N.J.M., Arbous M.S., Gommers D., Kant K.M. et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb. Res. 2020. 191. 145-7.

Zhao H., Shen D., Zhou H., Liu J., Chen S. Guillain-Barre syndrome associated with SARS-CoV-2 infection: causality or coincidence? Lancet Neurol. 2020. 19. 383-4.

Sedaghat Z., Karimi N. Guillain Barre syndrome associated with COVID-19 infection: a case report. J. Clin. Neurosci. 2020. 76. 233-5.

Toscano G., Palmerini F., Ravaglia S., Ruiz L., Invernizzi P., Cuzzoni M.G. et al. Guillain-Barre syndrome associated with SARS-CoV-2. N. Engl. J. Med. 2020. 382. 2574-6.

Domingues R.B., Mendes-Correa M.C., de Moura Leite F.B.V., Sabino E.C., Salarini D.Z., Claro I. et al. First case of SARS-COV-2 sequencing in cerebrospinal fluid of a patient with suspected demyelina-ting disease. J. Neurol. 2020. doi: 10.1007/s00415-020-09996-w.

Xu X.W., Wu X.X., Jiang X.G., Xu K.J., Ying L.J., Ma C.L. et al. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: retrospective case series. BMJ. 2020. 368. m606.

Asadi-Pooya A.A., Simani L. Central nervous system manifestations of COVID-19. A systematic review. J. Neurol. Sci. 2020. 413. 116832.

Sudre C.H., Murray В., Varsavsky Т. et al. Attributes and predictors of Long-COVID: analysis of COVID cases and their symptoms collected by the Covid Symptoms Study App. medRxiv. 2020. https://doi.org/10.1101/2020.10.19.20214494.

Emergency use ICD codes for COVID-19 disease outbreak. World Health organisation. https://www.who.int/classifications/classification-of-diseases/emergency-use-icd-codes-for-covid-19-dise-ase-outbreak.

COVID-19 rapid guideline: managing the long-term effects of COVID-19. NICE guideline [NG188]. Published date: 18 December 2020. https://www.nice.org.uk/guidance/ng188/chapter/5-Management.

Goërtz Y.M.J., Van Herck M., Delbressine J.M., Vaes A.W., Meys R., Machado F.V.C. et al. Persistent symptoms 3 months after a SARS-CoV-2 infection: the post- COVID-19 syndrome? ERJ Open Res. 2020. DOI: 10.1183/23120541.00542-2020.

Long COVID: How to define it and how to manage it. BMJ. 2020. 370. m3489. doi: https://doi.org/10.1136/bmj.m3489.

Noor-Ul-Huda Maria, Ain Siddiq, Salman Yousuf. The Effects of COVID-19 on Hypothalamus: Is it Another Face of SARS-CoV-2 That May Potentially Control the Level of COVID-19 Severity? DOI: 10.13140/RG.2.2.24482.25289.

Lu Y., Li X., Geng D., Mei N., Wu P.Y., Huang C.C., Jia T., Zhao Y., Wang D., Xiao A., Yin B. Cerebral Micro-Structural Changes in COVID-19 Patients — An MRI-based 3-month Follow-up Study. EClinicalMedicine. 2020 Aug. 25. 100484. doi: 10.1016/j.eclinm.2020.100484. Epub 2020 Aug 3. PMID: 32838240; PMCID: PMC7396952.

Greenhalgh T., Knight M., A’Court C., Buxton M., Husain L. Management of post-acute covid-19 in primary care. Br. Med. J. 2020. 370. m3026. DOI: 10.1136/bmj.m3026.

Carvalho-Schneider C., Laurent E., Lemaignen A., Beaufils E., Bourbao-Tournois C., Laribi S. et al. Follow-up of adults with noncritical COVID-19 two months after symptom onset. Clin. Microbiol. Infect. 2020. DOI: 10.1016/j.cmi.2020.09.052.

Carfì A., Bernabei R., Landi F., Group ftGAC-P-ACS. Persistent Symptoms in Patients After Acute COVID-19. J. Am. Med. Assoc. 2020. 324(6). 603-605. DOI: 10.1001/jama.2020.12603.

Galea S., Merchant R.M., Lurie N. The Mental Health Consequences of COVID-19 and Physical Distancing: The Need for Prevention and Early Intervention. JAMA Intern. Med. 2020. 180(6). 817-818. DOI: 10.1001/jamainternmed.2020.1562.

Hampshire A., Trender W., Chamberlain S.R., Jolly A., Grant J.E., Patrick F. et al. Cognitive deficits in people who have recovered from COVID-19 relative to controls: An N = 84,285 online study. medRxiv 2020. DOI: 10.1101/2020.10.20.20215863.

Halpin S.J., McIvor C., Whyatt G., Adams A., Harvey O., McLean L. et al. Postdischarge symptoms and rehabilitation needs in survivors of COVID-19 infection: A cross-sectional evaluation. J. Med. Virol. 2020. 1-10. DOI: 10.1002/jmv.26368.

Cai X., Hu X., Ekumi I.O., Wang J., An Y., Li Z. et al. Psychological Distress and Its Correlates Among COVID-19 Survivors During Early Convalescence Across Age Groups. Am. J. Geriatr. Psychiatr. 2020. 28(10). 1030-1039. DOI: 10.1016/j.jagp.2020.07.003.

Guedj E., Campion J.Y., Dudouet P. 18F-FDG brain PET hypometabolism in patients with long COVID. Eur. J. Nucl. Med. Mol. Imaging. 2021. https://doi.org/10.1007/s00259-021-05215-4.

Bhadelia N., Belkina A.C., Olson А. et al. Distinct Autoimmune Antibody Signatures Between Hospitalized Acute COVID-19 Patients, SARS-CoV-2 Convalescent Individuals, and Unexposed Pre-Pandemic Controls. https://doi.org/10.1101/2021.01.21.21249176.

Becker R.C. COVID-19 and its sequelae: a platform for optimal patient care, discovery and training. J. Thromb. Thrombolysis. 2021. https://doi.org/10.1007/s11239-021-02375-w.

Published

2021-05-19

Issue

Section

Review