Stem cell technologies in the comprehensive treatment of autism spectrum disorders

Authors

  • T.I. Petriv State Institution “Romodanov Neurosurgery Institute of the National Academy of Medical Sciences of Ukraine”, Kyiv, Ukraine http://orcid.org/0000-0001-9160-8908
  • M.M. Tatarchuk State Institution “Romodanov Neurosurgery Institute of the National Academy of Medical Sciences of Ukraine”, Kyiv, Ukraine
  • Yu.V. Tsymbalyuk State Institution “Romodanov Neurosurgery Institute of the National Academy of Medical Sciences of Ukraine”, Kyiv, Ukraine
  • V.I. Tsymbalyuk National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine

DOI:

https://doi.org/10.22141/2224-0713.16.6.2020.215137

Keywords:

autism spectrum disorders, regenerative stem cell technologies, mesenchymal stem cells, review

Abstract

Autism spectrum disorders (ASD) is a common patho­logy diagnosed in 1 % of children, it has a significant impact on the life of patients and their relatives. ASD is an incurable disease nowadays, but early diagnosis and timely treatment and rehabilitation can improve understanding of the patient’s special needs and help with adaptation in society. A large number of factors are associated with the risk of developing ASD: low birth weight, older parents, metabolic disorders and autoimmune diseases in mother (diabetes, obesity), intrauterine infections, taking valproic acid or serotonin reuptake inhibitors, pesticide poisoning. Immune diseases, gastrointestinal disorders and intestinal dysbacteriosis are common in children with ASD. Studies of the immune status of children with ASD have confirmed the presence of pathology in at least half of them that is reflected in the pathological cytokine profile. In addition, there is a directly proportional relationship between an increase in proinflammatory cytokines and the deepening of social behavior disorders. Evidence for activation of astroglia and microglia in patients with ASD was also obtained. Given the peculiarities of the etiopathogenesis of ADS, one of the promising treatments may be cell therapy. Stem cells regenerative technologies are extremely promising in the treatment of chronic debilitating diseases of the nervous system, the effective treatment of which is currently lacking. Data from numerous in vitro, preclinical and clinical studies show a positive effect from the use of mesenchymal stem cells in a number of diseases with neuroautoimmune and neurodegenerative components. This review considers the current state of the problem of treating patients with autism spectrum disorders using regenerative stem cells technologies.

References

Nakaz Ministerstva oxorony` zdorov'ya Ukrayiny` 15.06.2015 №341. Unifikovany`j klinichny`j protokol pervy`nnoyi, vtory`nnoyi (specializovanoyi), trety`nnoyi (vy`sokospecializovanoyi) medy`chnoyi dopomogy` ta medy`chnoyi reabilitaciyi. Rozlady` auty`sty`chnogo spektra (rozlady` zagal`nogo rozvy`tku).

Famitafreshi H, Karimian M. Overview of the Recent Advances in Pathophysiology and Treatment for Autism. CNS Neurol Disord Drug Targets. 2018;17(8):590-594. doi: 10.2174/1871527317666180706141654. PMID: 29984672.

Battle DE. Diagnostic and Statistical Manual of Mental Disorders (DSM). Codas. 2013;25(2):191-2. doi: 10.1590/s2317-17822013000200017. PMID: 24413388.

Vuong HE, Hsiao EY. Emerging Roles for the Gut Microbiome in Autism Spectrum Disorder. Biol Psychiatry. 2017 Mar 1;81(5):411-423. doi: 10.1016/j.biopsych.2016.08.024. Epub 2016 Aug 26. PMID: 27773355; PMCID: PMC5285286.

Marler S, Ferguson BJ, Lee EB, Peters B, Williams KC, McDonnell E, Macklin EA, Levitt P, Gillespie CH, Anderson GM, Margolis KG, Beversdorf DQ, Veenstra-VanderWeele J. Brief Report: Whole Blood Serotonin Levels and Gastrointestinal Symptoms in Autism Spectrum Disorder. J Autism Dev Disord. 2016 Mar;46(3):1124-30. doi: 10.1007/s10803-015-2646-8. PMID: 26527110; PMCID: PMC4852703.

Gesundheit B, Ashwood P, Keating A, Naor D, Melamed M, Rosenzweig JP. Therapeutic properties of mesenchymal stem cells for autism spectrum disorders. Med Hypotheses. 2015 Mar;84(3):169-77. doi: 10.1016/j.mehy.2014.12.016. Epub 2014 Dec 30. PMID: 25592283.

Kordulewska NK, Kostyra E, Piskorz-Ogórek K, Moszyńska M, Cieślińska A, Fiedorowicz E, Jarmołowska B. Serum cytokine levels in children with spectrum autism disorder: Differences in pro- and anti-inflammatory balance. J Neuroimmunol. 2019 Dec 15;337:577066. doi: 10.1016/j.jneuroim.2019.577066. Epub 2019 Sep 15. PMID: 31629288.

Kordulewska NK, Kostyra E, Chwała B, Moszyńska M, Cieślińska A, Fiedorowicz E, Jarmołowska B. A novel concept of immunological and allergy interactions in autism spectrum disorders: Molecular, anti-inflammatory effect of osthole. Int Immunopharmacol. 2019 Jul;72:1-11. doi: 10.1016/j.intimp.2019.01.058. Epub 2019 Apr 3. PMID: 30953868.

Xu N, Li X, Zhong Y. Inflammatory cytokines: potential biomarkers of immunologic dysfunction in autism spectrum disorders. Mediators Inflamm. 2015;2015:531518. doi: 10.1155/2015/531518. Epub 2015 Feb 1. PMID: 25729218; PMCID: PMC4333561.

Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol. 2005 Jan;57(1):67-81. doi: 10.1002/ana.20315. Erratum in: Ann Neurol. 2005 Feb;57(2):304. PMID: 15546155.

Giunti D, Parodi B, Usai C, Vergani L, Casazza S, Bruzzone S, Mancardi G, Uccelli A. Mesenchymal stem cells shape microglia effector functions through the release of CX3CL1. Stem Cells. 2012 Sep;30(9):2044-53. doi: 10.1002/stem.1174. PMID: 22821677.

Abrahams BS, Geschwind DH. Connecting genes to brain in the autism spectrum disorders. Arch Neurol. 2010 Apr;67(4):395-9. doi: 10.1001/archneurol.2010.47. PMID: 20385903; PMCID: PMC3645845.

Liu Q, Chen MX, Sun L, Wallis CU, Zhou JS, Ao LJ, Li Q, Sham PC. Rational use of mesenchymal stem cells in the treatment of autism spectrum disorders. World J Stem Cells. 2019 Feb 26;11(2):55-72. doi: 10.4252/wjsc.v11.i2.55. PMID: 30842805; PMCID: PMC6397804.

Wong CC, Meaburn EL, Ronald A, Price TS, Jeffries AR, Schalkwyk LC, Plomin R, Mill J. Methylomic analysis of monozygotic twins discordant for autism spectrum disorder and related behavioural traits. Version 2. Mol Psychiatry. 2014 Apr;19(4):495-503. doi: 10.1038/mp.2013.41. Epub 2013 Apr 23.

Ding DC, Chang YH, Shyu WC, Lin SZ. Human umbilical cord mesenchymal stem cells: a new era for stem cell therapy. Cell Transplant. 2015;24(3):339-47. doi: 10.3727/096368915X686841. Epub 2015 Jan 23. PMID: 25622293.

Lee H, Yun S, Kim IS, Lee IS, Shin JE, Park SC, Kim WJ, Park KI. Human fetal brain-derived neural stem/progenitor cells grafted into the adult epileptic brain restrain seizures in rat models of temporal lobe epilepsy. PLoS One. 2014 Aug 8;9(8):e104092. doi: 10.1371/journal.pone.0104092. PMID: 25105891; PMCID: PMC4126719.

Suman S, Domingues A, Ratajczak J, Ratajczak MZ. Potential Clinical Applications of Stem Cells in Regenerative Medicine. Adv Exp Med Biol. 2019;1201:1-22. doi: 10.1007/978-3-030-31206-0_1. PMID: 31898779.

Teshigawara R, Cho J, Kameda M, Tada T. Mechanism of human somatic reprogramming to iPS cell. Lab Invest. 2017;97(10):1152-1157. doi:10.1038/labinvest.2017.56

Ohnuki M, Takahashi K. Present and future challenges of induced pluripotent stem cells. Philos Trans R Soc Lond B Biol Sci. 2015 Oct 19;370(1680):20140367. doi: 10.1098/rstb.2014.0367. PMID: 26416678; PMCID: PMC4633996.

Viswanathan S, Shi Y, Galipeau J, et al. Mesenchymal stem versus stromal cells: International Society for Cell & Gene Therapy (ISCT®) Mesenchymal Stromal Cell committee position statement on nomenclature. Cytotherapy. 2019;21(10):1019-1024. doi:10.1016/j.jcyt.2019.08.002

Horwitz EM, Le Blanc K, Dominici M, Mueller I, Slaper-Cortenbach I, Marini FC, Deans RJ, Krause DS, Keating A; International Society for Cellular Therapy. Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy. 2005;7(5):393-5. doi: 10.1080/14653240500319234. PMID: 16236628.

Mushahary D, Spittler A, Kasper C, Weber V, Charwat V. Isolation, cultivation, and characterization of human mesenchymal stem cells. Cytometry A. 2018 Jan;93(1):19-31. doi: 10.1002/cyto.a.23242. Epub 2017 Oct 26. PMID: 29072818.

Naji A, Eitoku M, Favier B, Deschaseaux F, Rouas-Freiss N, Suganuma N. Biological functions of mesenchymal stem cells and clinical implications. Cell Mol Life Sci. 2019 Sep;76(17):3323-3348. doi: 10.1007/s00018-019-03125-1. Epub 2019 May 4. PMID: 31055643.

Samsonraj RM, Raghunath M, Nurcombe V, Hui JH, van Wijnen AJ, Cool SM. Concise Review: Multifaceted Characterization of Human Mesenchymal Stem Cells for Use in Regenerative Medicine. Stem Cells Transl Med. 2017;6(12):2173-2185. doi:10.1002/sctm.17-0129

Li H, Ghazanfari R, Zacharaki D, Lim HC, Scheding S. Isolation and characterization of primary bone marrow mesenchymal stromal cells. Ann N Y Acad Sci. 2016 Apr;1370(1):109-18. doi: 10.1111/nyas.13102. PMID: 27270495.

Galipeau J, Sensébé L. Mesenchymal Stromal Cells: Clinical Challenges and Therapeutic Opportunities. Cell Stem Cell. 2018 Jun 1;22(6):824-833. doi: 10.1016/j.stem.2018.05.004. PMID: 29859173; PMCID: PMC6434696.

Schmelzer E, McKeel DT, Gerlach JC. Characterization of Human Mesenchymal Stem Cells from Different Tissues and Their Membrane Encasement for Prospective Transplantation Therapies. Biomed Res Int. 2019 Mar 3;2019:6376271. doi: 10.1155/2019/6376271. PMID: 30941369; PMCID: PMC6421008.

Rybachyk OA. Pivneva TA. Prospects of the use of mesenchymal and neuromesenchymal stem cells. Neurophysiology, 2013, 45.5-6: 477-494. doi.org/10.1007/s11062-013-9397-y

Sullivan R, Dailey T, Duncan K, Abel N, Borlongan CV. Peripheral Nerve Injury: Stem Cell Therapy and Peripheral Nerve Transfer. Int J Mol Sci. 2016 Dec;17(12):2101. doi:10.3390/ijms17122101. PMID: 27983642; PMCID: PMC5187901.

Spejo AB, Carvalho JL, Goes AM, Oliveira AL. Neuroprotective effects of mesenchymal stem cells on spinal motoneurons following ventral root axotomy: synapse stability and axonal regeneration. Neuroscience. 2013 Oct 10;250:715-32. doi: 10.1016/j.neuroscience.2013.07.043. Epub 2013 Jul 27. PMID: 23896572.

Pramanik S, Sulistio YA, Heese K. Neurotrophin Signaling and Stem Cells-Implications for Neurodegenerative Diseases and Stem Cell Therapy. Mol Neurobiol. 2017 Nov;54(9):7401-7459. doi: 10.1007/s12035-016-0214-7. Epub 2016 Nov 5. PMID: 27815842.

Sirerol-Piquer MS, Belenguer G, Morante-Redolat JM, Duart-Abadia P, Perez-Villalba A, Fariñas I. Physiological Interactions between Microglia and Neural Stem Cells in the Adult Subependymal Niche. Neuroscience. 2019 May 1;405:77-91. doi: 10.1016/j.neuroscience.2019.01.009. Epub 2019 Jan 21. PMID: 30677487.

Denu RA, Hematti P. Effects of Oxidative Stress on Mesenchymal Stem Cell Biology. Oxid Med Cell Longev. 2016;2016:2989076. doi: 10.1155/2016/2989076. Epub 2016 Jun 16. PMID: 27413419; PMCID: PMC4928004.

Zhang L, Issa Bhaloo S, Chen T, Zhou B, Xu Q. Role of Resident Stem Cells in Vessel Formation and Arteriosclerosis. Circ Res. 2018 May 25;122(11):1608-1624. doi: 10.1161/CIRCRESAHA.118.313058. PMID: 29798903; PMCID: PMC5976231.

Gruchot J, Weyers V, Göttle P, Förster M, Hartung HP, Küry P, Kremer D. The Molecular Basis for Remyelination Failure in Multiple Sclerosis. Cells. 2019 Aug 3;8(8):825. doi: 10.3390/cells8080825. PMID: 31382620; PMCID: PMC6721708.

De Miguel MP, Fuentes-Julián S, Blázquez-Martínez A, Pascual CY, Aller MA, Arias J, Arnalich-Montiel F. Immunosuppressive properties of mesenchymal stem cells: advances and applications. Curr Mol Med. 2012 Jun;12(5):574-91. doi: 10.2174/156652412800619950. PMID: 22515979

Rameshwar P, Moore CA, Shah NN, Smith CP. An Update on the Therapeutic Potential of Stem Cells. Methods Mol Biol. 2018;1842:3-27. doi: 10.1007/978-1-4939-8697-2_1. PMID: 30196398.

Meisel R, Zibert A, Laryea M, Göbel U, Däubener W, Dilloo D. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood. 2004 Jun 15;103(12):4619-21. doi: 10.1182/blood-2003-11-3909. Epub 2004 Mar 4. PMID: 15001472.

Zhang Z, Huang S, Wu S, Qi J, Li W, Liu S, Cong Y, Chen H, Lu L, Shi S, Wang D, Chen W, Sun L. Clearance of apoptotic cells by mesenchymal stem cells contributes to immunosuppression via PGE2. EBioMedicine. 2019 Jul;45:341-350. doi: 10.1016/j.ebiom.2019.06.016. Epub 2019 Jun 24. PMID: 31248835; PMCID: PMC6642220.

Zafranskaya M, Nizheharodava D, Yurkevich M, Ivanchik G, Demidchik Y, Kozhukh H, Fedulov A. PGE2 contributes to in vitro MSC-mediated inhibition of non-specific and antigen-specific T cell proliferation in MS patients. Scand J Immunol. 2013 Nov;78(5):455-62. doi: 10.1111/sji.12102. PMID: 23944654.

Ma S, Xie N, Li W, Yuan B, Shi Y, Wang Y. Immunobiology of mesenchymal stem cells. Cell Death Differ. 2014 Feb;21(2):216-25. doi: 10.1038/cdd.2013.158. Epub 2013 Nov 1. PMID: 24185619; PMCID: PMC3890955.

Gao F, Chiu SM, Motan DA, Zhang Z, Chen L, Ji HL, Tse HF, Fu QL, Lian Q. Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell Death Dis. 2016 Jan 21;7(1):e2062. doi: 10.1038/cddis.2015.327. PMID: 26794657; PMCID: PMC4816164.

Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005 Feb 15;105(4):1815-22. doi: 10.1182/blood-2004-04-1559. Epub 2004 Oct 19. PMID: 15494428.

Ha S, Park H, Mahmood U, Ra JC, Suh YH, Chang KA. Human adipose-derived stem cells ameliorate repetitive behavior, social deficit and anxiety in a VPA-induced autism mouse model. Behav Brain Res. 2017 Jan 15;317:479-484. doi: 10.1016/j.bbr.2016.10.004. Epub 2016 Oct 4. PMID: 27717813.

Gobshtis N, Tfilin M, Wolfson M, Fraifeld VE, Turgeman G. Transplantation of mesenchymal stem cells reverses behavioural deficits and impaired neurogenesis caused by prenatal exposure to valproic acid. Oncotarget. 2017 Mar 14;8(11):17443-17452. doi: 10.18632/oncotarget.15245. PMID: 28407680; PMCID: PMC5392261.

Ellegood J, Crawley JN. Behavioral and Neuroanatomical Phenotypes in Mouse Models of Autism. Neurotherapeutics. 2015 Jul;12(3):521-33. doi: 10.1007/s13311-015-0360-z. PMID: 26036957; PMCID: PMC4489953.

Uccelli A, Milanese M, Principato MC, Morando S, Bonifacino T, Vergani L, Giunti D, Voci A, Carminati E, Giribaldi F, Caponnetto C, Bonanno G. Intravenous mesenchymal stem cells improve survival and motor function in experimental amyotrophic lateral sclerosis. Mol Med. 2012 Jul 18;18(1):794-804. doi: 10.2119/molmed.2011.00498. PMID: 22481270; PMCID: PMC3409288.

van Velthoven CT, Kavelaars A, van Bel F, Heijnen CJ. Mesenchymal stem cell treatment after neonatal hypoxic-ischemic brain injury improves behavioral outcome and induces neuronal and oligodendrocyte regeneration. Brain Behav Immun. 2010 Mar;24(3):387-93. doi: 10.1016/j.bbi.2009.10.017. Epub 2009 Oct 31. PMID: 19883750.

Segal-Gavish H, Karvat G, Barak N, Barzilay R, Ganz J, Edry L, Aharony I, Offen D, Kimchi T. Mesenchymal Stem Cell Transplantation Promotes Neurogenesis and Ameliorates Autism Related Behaviors in BTBR Mice. Autism Res. 2016 Jan;9(1):17-32. doi: 10.1002/aur.1530. Epub 2015 Aug 10. PMID: 26257137.

Perets N, Segal-Gavish H, Gothelf Y, Barzilay R, Barhum Y, Abramov N, Hertz S, Morozov D, London M, Offen D. Long term beneficial effect of neurotrophic factors-secreting mesenchymal stem cells transplantation in the BTBR mouse model of autism. Behav Brain Res. 2017 Jul 28;331:254-260. doi: 10.1016/j.bbr.2017.03.047. Epub 2017 Apr 7. PMID: 28392323.

Lv YT, Zhang Y, Liu M, Qiuwaxi JN, Ashwood P, Cho SC, Huan Y, Ge RC, Chen XW, Wang ZJ, Kim BJ, Hu X. Transplantation of human cord blood mononuclear cells and umbilical cord-derived mesenchymal stem cells in autism. J Transl Med. 2013 Aug 27;11:196. doi: 10.1186/1479-5876-11-196. PMID: 23978163; PMCID: PMC3765833.

Riordan NH, Hincapié ML, Morales I, Fernández G, Allen N, Leu C, Madrigal M, Paz Rodríguez J, Novarro N. Allogeneic Human Umbilical Cord Mesenchymal Stem Cells for the Treatment of Autism Spectrum Disorder in Children: Safety Profile and Effect on Cytokine Levels. Stem Cells Transl Med. 2019 Oct;8(10):1008-1016. doi: 10.1002/sctm.19-0010. Epub 2019 Jun 11. PMID: 31187597; PMCID: PMC6766688.

Dawson G, Sun JM, Davlantis KS, Murias M, Franz L, Troy J, Simmons R, Sabatos-DeVito M, Durham R, Kurtzberg J. Autologous Cord Blood Infusions Are Safe and Feasible in Young Children with Autism Spectrum Disorder: Results of a Single-Center Phase I Open-Label Trial. Stem Cells Transl Med 2017; 6:1332-1339. PMID: 28378499 DOI: 10.1002/sctm.16-0474

Sharma A, Gokulchandran N, Sane H, Nagrajan A, Paranjape A, Kulkarni P, Shetty A, Mishra P, Kali M, Biju H, Badhe P. Autologous bone marrow mononuclear cell therapy for autism: an open label proof of concept study. Stem Cells Int. 2013;2013:623875. doi: 10.1155/2013/623875. Epub 2013 Aug 25. PMID: 24062774; PMCID: PMC3767048.

Lalu MM, McIntyre L, Pugliese C, Fergusson D, Winston BW, Marshall JC, Granton J, Stewart DJ; Canadian Critical Care Trials Group. Safety of cell therapy with mesenchymal stromal cells (SafeCell): a systematic review and meta-analysis of clinical trials. PLoS One. 2012;7(10):e47559. doi: 10.1371/journal.pone.0047559. Epub 2012 Oct 25. PMID: 23133515; PMCID: PMC3485008.

Henriksen K, Dymek C, Harrison MI, Brady PJ, Arnold SB. Challenges and opportunities from the Agency for Healthcare Research and Quality (AHRQ) research summit on improving diagnosis: a proceedings review. Diagnosis (Berl). 2017 Jun 27;4(2):57-66. doi: 10.1515/dx-2017-0016. PMID: 29536924.

Published

2020-09-01

Issue

Section

Original Researches