Classification of motor impairments after stroke in consequence of adaptive kinematic specificity

V.A. Lukashevich, V.V. Ponomarev


Background. Clinical assessment of stroke, as a rule, is based on the use of the most adapted classifications of TOAST and ASCOD. Moreover, their general disadvantage is associated with their etiopathogenetic orientation, which sharply limits the clinical value of these classifications for subsequent medical rehabilitation. At the same time, the international classification of functioning, limitation of vital functions and health, on the one hand, is more applicable in rehabilitation medicine, and on the other hand, it is quite difficult in describing the complex problem of motor impairments in stroke. The aim of the study was to develop a classification of motor impairments in stroke. Materials and methods. The study involved 42 patients (25 men and 17 women aged 56.1 ± 4.7 years) in the early recovery period after stroke. As a comparison group, 27 healthy volunteers (16 men and 11 women aged 38.3 ± 5.5 years) were examined. Diagnosis of adaptive kinematics was carried out using the Teslasuit software and hardware, which included a control program and a smart suit with built-in inertial sensors. Postural testing consisting of four postural tests was used as a standardized diagnostic program. The study included 3 stages. At the first stage, screening was carried out for selection into the research group
using clinical scales: the Ashworth scale, the National Institutes of Health Stroke Scale, the modified Rankin scale, the Barthel index, the Rivermead mobility index, a 10-meter walk test, the stability of the vertical posture and the severity of fatigue. At the second stage, the diagnosis of adaptive kinematics was performed using a battery of specific test tasks and subsequent analysis of the average angular deviation of the main kinematic elements. During the third stage, the calculation of the total percentage of restricted mobility (TPRM) was performed with the identification of the median, upper and lower quartiles, which were markers of the TPRM corridor. Results. The value of the indicator forms the basis for a qualitative diagnosis of adaptive kinematics and a new classification of motor impairments in stroke according to severity: degree Ia — minimal disturbances (TPRM < 26 %); degree Ib — mild (TPRM — 26–38 %); degree IIa — moderate (TPRM — 39–51 %); degree IIb — significant (TPRM — 52–64 %); degree IIIa — severe (TPRM — 65–77 %); degree IIIb — extremely severe (TPRM > 77 % and higher).


stroke; motor impairment classification; adaptive kinematics; pathobiomechanical phenotype; Teslasuit technology


Katan M., Luft A. Global Burden of Stroke. Semin. Neurol. 2018. Vol. 38. № 2. P. 208-211. DOI: 10.1055/s-0038-1649503.

Stinear C.M. Prediction of motor recovery after stroke: advan-ces in biomarkers. Lancet Neurol. 2017. Vol. 16. № 10. P. 826-836. DOI: 10.1016/S1474-4422(17)30283-1.

Go A.S., Mozaffarian D., Roger V.L. [et al.]. Heart disease and stroke statistics — 2013 update: a report from the American Heart Association. Circulation. 2013. Vol. 127. P. 6-245. DOI: 10.1161/CIR.0b013e31828124ad.

García-Rudolph A., Laxe S., Saurí J., Opisso E., Tormos J.M., Bernabeu M. Evidence of chronic stroke rehabilitation interventions in activities and participation outcomes: systematic review of meta-analyses of randomized controlled trials. Eur. J. of Physical and Rehabilitation Medicine. 2019. Vol. 55. № 6. P. 695-709. DOI: 10.23736/S1973-9087.19.05814-3.

Ravi D.K., Gwerder M., König Ignasiak N. [et al.]. Revealing the optimal thresholds for movement performance: A systematic review and meta-analysis to benchmark pathological walking behaviour. Neurosci. Biobehav. Rev. 2020. Vol. 108. P. 24-33. DOI: 10.1016/j.neubiorev.2019.10.008.

Tashiro S., Mizuno K., Kawakami M. [et al.]. Neuromuscular electrical stimulation-enhanced rehabilitation is associated with not only motor but also somatosensory cortical plasticity in chronic stroke patients: an interventional study. Therapeutic Advances in Chronic Disease. 2019. Vol. 10. P. 1-13. DOI: 10.1177/2040622319889259.

Saad M.B., Vishal S.V. Stroke rehabilitation: A call to action in Saudi Arabia. Neurosciences. 2016. Vol. 21. № 4. P. 297-305. DOI: 10.17712/nsj.2017.3.20170010.

Сокрут В.Н., Сокрут О.П., Синяченко О.В. «Вегетативный паспорт» и реабилитационный диагноз в артрологической практике. 2016. № 1(21). С. 45-50.

Wolf M.E., Sauer T., Alonso A., Hennerici M.G. Comparison of the new ASCO classification with the TOAST classification in a population with acute ischemic stroke. J. Neurol. 2012. Vol. 259. P. 1284-1289. DOI: 10.1007/s00415-011-6325-1.

Amarenco P., Bogousslavsky J., Caplan L.R., Donnan G.A., Hennerici M.G. A new approach to stroke subtyping: the A-S-C-O (phenotypic) classification of stroke. Cerebrovasc Dis. 2009. Vol. 27. P. 502-508. DOI: 10.1159/000352050.

Wolf M.E., Sauer T., Hennerici M.G., Chatzikonstantinou A. Characterization of patients with recurrent ischemic stroke using the ASCO classification. Eur. J. Neurol. 2013. Vol. 20. P. 812-817. DOI: 10.1111/ene.12068.

Голик В.А., Мороз Е.Н., Погорелова С.А. Использование международной классификации функционирования, ограничений жизнедеятельности и здоровья в экспертной практике. Международный неврологический журнал. 2011. № 5(43). С. 136-142.

Kyeong S., Kim S.M., Jung S., Kim D.H. Gait pattern analysis and clinical subgroup identification: a retrospective observational study. Medicine (Baltimore). 2020. Vol. 99. № 15. e19555. DOI: 10.1097/MD.0000000000019555.

Mina P., Myoung-Hwan Ko., Sang-Wook O. [et al.]. Effects of virtual reality-based planar motion exercises on upper extremity function, range of motion, and health-related quality of life: a multicenter, single-blinded, randomized, controlled pilot study. J. Neuroeng. Rehabil. 2019. Vol. 16. Article 122. DOI: 10.1186/s12984-019-0595-8.

König N., Singh N.B., Baumann C.R., Taylor W.R. Can Gait Signatures Provide Quantitative Measures for Aiding Clinical Decision-Making? A Systematic Meta-Analysis of Gait Variability Behavior in Patients with Parkinson’s Disease. Front. Hum. Neurosci. 2016. Vol. 10. P. 308-319. DOI: 10.3389/fnhum.2016.00319.

Muro-de-la-Herran A., Garcia-Zapirain B., Mendez-Zorrilla A. Gait analysis methods: an overview of wearable and non-wea-rable systems, highlighting clinical applications. Sensors (Basel). 2014. Vol. 14. № 2. P. 3362-3394. DOI: 10.3390/s140203362.

De Vroey H., Staes F., Weygers I. [et al.]. The implementation of inertial sensors for the assessment of temporal parameters of gait in the knee arthroplasty population. Clin. Biomech. 2018. Vol. 54. P. 22-27. DOI: 10.1016/j.clinbiomech.2018.03.002.

Robles-García V., Corral-Bergantiños Y., Espinosa N. [et al.]. Spatiotemporal Gait Patterns During Overt and Covert Evaluation in Patients With Parkinson´s Disease and Healthy Subjects: Is There a Hawthorne Effect? J. Appl. Biomech. 2015. Vol. 3. P. 189-94. DOI: 10.1123/jab.2013-0319.

Li K.Y., Lin K.C., Chen C.K., Liing R.J., Wu C.Y., Chang W.Y. Concurrent and Predictive Validity of Arm Kinematics with and without a Trunk Restraint During a Reaching Task in Individuals with Stroke. Arch. Phys. Med. Rehabil. 2015. Vol. 96. P. 1666-1675. DOI: 10.1016/j.apmr.2015.04.013.

De Vroey H., Claeys K., Vereecke E. [et al.]. Correlation between an inertial and camera-based system for the assessment of temporal parameters of gait in the knee arthroplasty population. Gait Posture. 2017. Vol. 57. P. 280-281. DOI: 10.1016/j.gaitpost.2017.06.417.

Yu G., Jang Y.J., Kim J., Kim J.H., Kim H.Y., Kim K., Panday S.B. Potential of IMU Sensors in Performance Analysis of Professional Alpine Skiers. Sensors (Basel). 2016. Vol. 16. № 4. P. 432-463. DOI: 10.3390/s16040463.

Boutaayamou M., Schwartz C., Stamatakis J. [et al.]. Deve­lopment and validation of an accelerometer-based method for quantifying gait events. Med. Eng. Phys. 2015. Vol. 37. P. 226-232. DOI: 10.1016/j.medengphy.2015.01.001

Международная классификация функционирования, ограничений жизнедеятельности и здоровья. Женева: ВОЗ, 2001. 342 с.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


© Publishing House Zaslavsky, 1997-2020


   Seo анализ сайта