DOI: https://doi.org/10.22141/2224-0713.6.108.2019.180536

Some aspects of pathogenetic impact on the GABAergic system

M.A. Trishchynska, M.V. Polivoda

Abstract


The article presents up­to­date data on the structure, classification, differences between different types of gamma­aminobutyric acid (GABA) receptors and their prevalence. Given this information, some links in the pathogenesis of neurological di­seases become clear. At the same time, the impact on GABAergic neurotransmission opens new possibilities for both symptomatic and pathogenetic treatment of neurological disorders. One of the unusual effects on the GABAergic system at different levels of the central nervous system is muscle relaxation.


Keywords


γ-aminobutyric acid; GABA receptors; inhibitory system of the central nervous system; neurotransmission; muscle relaxant

References


Soghomonian J.J., Martin D.L. Two isoforms of glutamate decarboxylase: why? Trends Pharmacol. Sci. 1998. Vol. 19. № 12. 500-505.

Fykse E.M., Fonnum F. Amino acid neurotransmission: dynamics of vesicular uptake. Neurochem. Res. 1996. Vol. 21. № 9. Р. 1053-1060.

Bormann J. The “ABC” of GABA receptors. Trends Pharmacol. Sci. 2000. Vol. 21. № 1. Р. 16-19.

Baur R., Kaur K.H., Sigel E. Structure of α6β3δ GABAA receptors and their lack of ethanol sensitivity. J. Neurochem. 2009. Vol. 111. Р. 1172-1181.

Sigel E., Baur R., Trube G., Möhler H., Malherbe P. The effect of subunit composition of rat brain GABAA receptors on channel function. Neuron. 1990. Vol. 5. Р. 703-711.

Minier F., Sigel E. Positioning of the subunit isoforms confers a functional signature to aminobutyric acid type A receptors. Proc. Natl. Acad. Sci. U.S.A. 2004. 101. 7769-7774.

Betz H. Ligand-gated ion channels in the brain: the amino acid receptor superfamily. Neuron. 1990. Vol. 5. Р. 383-392.

Rivera С., Voipio J., Payne J.A. et al. The K+/Cl– co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature. 1999. Vol. 397. № 6716. Р. 251-255.

Ernst M., Bruckner S., Boresch S., Sieghart W. Comparative models of GABAA receptor extracellular and transmembrane domains: important insights in pharmacology and function. Mol. Pharmacol. 2005. 68. 1291-1300.

Miller P.S., Smart T.G. Binding, activation, and modulationof Cys loop receptors. Trends Pharmacol. Sci. 2010. 31. 161-1749.

Sigel E., Steinmann M.E. Structure, Function, and Modulation of GABAA Receptors. The journal of biological chemistry. 2012. Vol. 287. № 48. Р. 40224-40231.

Bianchi M.T., Haas K.F., Macdonald R.L. Structural determinants of fast desensitization and desensitization-deactivation coupling in GABA a receptors. J. Neurosci. 2001. Vol. 21. № 4. Р. 1127-1136.

Nusser Z., Sieghart W., Benke D. et al. Differential synaptic localization of two major gamma-aminobutyric acid type A receptor alpha subunits on hippocampal pyramidal cells. Proc. Natl. Acad. Sci. USA. 1996. Vol. 93. № 21. Р. 11939-11944.

Sperk G., Schwarzer C., Tsunashima K. et al. GABA(A) receptor subunits in the rat hippocampus. I: immunocytochemical distributionof 13 subunits. Neuroscience. 1997. Vol. 80. № 4. Р. 987-1000.

Whiting P.J., McKernan R.M., Wafford K.A. Structure and pharmacology of vertebrate GABAA receptor subtypes. Int. Rev. Neurobiol. 1995. 38. 95-138.

Tretter V., Ehya N., Fuchs K., Sieghart W. Stoichiometry and assembly of a recombinant GABAA receptor subtype. J. Neurosci. 1997. 17. 2728-2737.

Baumann S.W., Baur R., Sigel E. Forced subunit assembly in 122 GABAA receptors. Insight into the absolute arrangement. J. Biol. Chem. 2002. 277. 46020-46025.

Baur R., Minier F., Sigel E. A GABAA receptor of defined subunit composition and positioning: concatenation of five subunits. FEBS Lett. 2006. 580. 1616-1620.

Sieghart W., Sperk G. Subunit composition, distribution, and function of GABAA receptor subtypes. Curr. Top. Med. Chem. 2002. 2. 795-816.

Minuk G.Y., Zhang M., Gong Y., Minuk L., Dienes H., Pettigrew N., Kew M., Lipschitz J., Sun D. Decreased hepatocyte membrane potential differences and GABAA-3 expression in human hepatocellular carcinoma. Hepatology. 2007. 45. 735-745.

Mizuta K., Xu D., Pan Y., Comas G., Sonett J.R., Zhang Y., Panettieri R.A. Jr., Yang J., Emala C.W. Sr. GABAA receptors are expressed and facilitate relaxation in airway smooth muscle. Am. J. Physiol. Lung Cell. Mol. Physiol. 2008. 294. L1206-L1216

Alam S., Laughton D.L., Walding A., Wolstenholme A.J. Human peripheral blood mononuclear cells express GABAA receptorsubunits. Mol. Immunol. 2006. 43. 1432-1442.

Bjurstöm H., Wang J., Ericsson I., Bengtsson M., Liu Y., Kumar-Mendu S., Issazadeh-Navikas S., Birnir B. GABA, a natural immunomodulator of T lymphocytes. J. Neuroimmunol. 2008. 205. 44-50.

Miller S.L., Yeh H.H. Neurotransmitters and Neurotransmission in the Developing and Adult Nervous System. Conn’s Translational Neuroscience. 2017.

Maguire J.L., Stell B.M., Rafizadeh M., Mody I. Ovarian cycle-linked changes in GABAA receptors mediating tonic inhibition alter seizure susceptibility and anxiety. Nat. Neurosci. 2005. 8. 797-804.

Olsen R.W., DeLorey T.M. GABA Receptor Physiology and Pharmacology. Basic Neurochemistry. 6th edition. 1999.

Johnston G.A. GABA A receptor pharmacology. Pharmacol. Ther. 1996. Vol. 69. № 3. Р. 173-198.

Eghbali M., Gage P.W., Birnir B. Pentobarbital modulates gamma-aminobutyric acid-activated single-channel conductance in rat cultured hippocampal neurons. Mol. Pharmacol. 2000. Vol. 58. № 3. 463-469.

Nishikawa М., Hirouchi М., Kuriyama К. Functional coupling of G i subtype with GABA B receptor/adenylyl cyclase system: analysis using a reconstituted system with purified GTP-binding protein from bovine cerebral cortex. Neurochem. Int. 1997. Vol. 31. № 1. Р. 21-25.

Mintz I.M., Bean B.P. GABA B receptor inhibition of P-type Ca2+ channels in central neurons. Neuron. 1993. Vol. 10. № 5. Р. 889-898.

Anwyl R. Modulation of vertebrate neuronal calcium channels by transmitters. Brain Res. Rev. 1991. Vol. 16. № 3. Р. 265-281.

Mohler Н., Fritschy J.M. GABA B receptors make it to the topas dimers. Trends Pharmacol. Sci. 1999. Vol. 20, № 3. Р. 87-89.

Jones K.A., Borowsky B., Tamm J.A. et al. GABA(B) receptors function as a heteromeric assembly of the subunits GABA(B)R1 and GABA(B)R2. Nature. 1998. Vol. 396. № 6712. Р. 674-679.

Couve А., Moss S.J., Pangalos M.N. GABA B receptors: a new paradigm in G protein signaling. Mol. Cell Neurosci. 2000. Vol. 16. № 4. Р. 296-312.

Mott D.D., Lewis D.V. The pharmacology and function of central GABA B receptors. Int. Rev. Neurobiol. 1994. Vol. 36. Vol. 97-223.

Misgeld U., Bijak M., Jarolimek W. A physiological role for GABA B receptors and the effects of baclofen in the mammalian central nervous system. Prog. Neurobiol. 1995. Vol. 46. № 4. Р. 423-462.

Andrade R., Malenka R.C., Nicoll R.A. A G protein couples serotonin and GABA B receptors to the same channels in hippocampus. Science. 1986. Vol. 234. № 4781. Р. 1261-1265.

Scanziani М. GABA spillover activates postsynaptic GABA(B) receptors to control rhythmic hippocampal activity. Neuron. 2000. Vol. 25. № 3. Р. 673-681.

Bormann J., Feigenspan A. GABAC receptors. Trends Neurosci. 1995. Vol. 18. № 12. Р. 515-519.

Zhang D., Pan Z.H., Awobuluyi M. et al. Structure and function of GABA(C) receptors: a comparison of native versus recombinant receptors. Trends Pharmacol. Sci. 2001. Vol. 22. № 3. Р. 121-132.

Enz R., Brandstatter J.H., Hartveit E. et al. Expression of GABA receptor rho 1 and rho 2 subunits in the retina and brain of the rat. Eur. J. Neurosci. 1995. Vol. 7. № 7. Р. 1495-1501.

Wegelius K., Pasternack M., Hiltunen J.O. et al. Distribution of GABA receptor rho subunit transcripts in the rat brain. Eur. J. Neurosci. 1998. Vol. 10. № 1. Р. 350-357.

Enz R., Cutting G.R. GABAC receptor rho subunits are he-terogeneously expressed in the human CNS and form homo- and he­terooligomers with distinct physical properties. Eur. J. Neurosci. 1999. Vol. 11. № 1. Р. 41-50.

Ogurusu T., Yanagi K., Watanabe М. et al. Localization of GABA receptor rho 2 and rho 3 subunits in rat brain and functio­nal expression of homooligomeric rho 3 receptors and heterooligomeric rho 2 rho 3 receptors. Receptors Channels. 1999. Vol. 6. № 6. Р. 463-475.

Schousboe А. Pharmacological and functional characterization of astrocytic GABA transport: a short review. Neurochem. Res. 2000. 25, Nos. 9/10. Р. 1241-1244.

Kavanaugh M.P., Arriza J.L., North R.A. et al. Electrogenicuptake of gamma-aminobutyric acid by a cloned transporter expressed in Xenopus oocytes. J. Biol. Chem. 1992. Vol. 267. № 31. Р. 22007-22009.

Cammack J.N., Rakhilin S.V., Schwartz E.A. A GABA transporter operates asymmetrically and with variable stoichio-metry. Neuron. 1994. Vol. 13. № 4. Р. 949-960.

Freund T.F., Gulyas A.I. Inhibitory control of GABA-ergic interneurons in the hippocampus. Can. J. Physiol. Pharmacol. 1997. Vol. 75. № 5. Р. 479-487.

Freund T.F., Buzsaki G. Interneurons of the hippocampus. Hippocampus. 1996. Vol. 6. № 4. Р. 347-470.

Scanziani М., Gahwiler B.H., Charpak S. Target cell-specific modulation of transmitter release at terminals from a single axon. Proc. Natl. Acad. Sci. USA, 1998. Vol. 95. № 20. Р. 12004-12009.

Miles R., Toth К., Gulyas A.I. et al. Differences between somatic and dendritic inhibition in the hippocampus. Neuron. 1996. Vol. 16. № 4. Р. 815-823.

Brickley S.G., Cull-Candy S.G., Farrant М. Development of a tonic form of synaptic inhibition in rat cerebellar granule cells resulting from persistent activation of GABA A receptors. J. Physiol. 1996. Vol. 497. № 3. Р. 753-759.

Wall M.J., Usowicz M.M. Development of action potential-dependent and independent spontaneous GABAA receptor-mediated currents in granule cells of postnatal rat cerebellum. Eur. J. Neurosci. 1997. Vol. 9. № 3. Р. 533-548.

Salin P.A., Prince D.A. Spontaneous GABA A receptor-mediated inhibitory currents in adult rat somatosensory cortex. J. Neurophysiol. 1996. Vol. 75. № 4. Р. 1573-1588.

Liu Q.Y., Vautrin J., Tang K.M. et al. Exogenous GABA persistently opens Cl-channels in cultured embryonic rat thalamic neurons. J. Membrane Biol. 1995. Vol. 145. № 3. Р. 279-284.

Otis T.S., Staley K.J., Mody І. Perpetual inhibitory activity in mammalian brain slices generated by spontaneous GABA release. Brain Res. 191. 545. Nos. 1/2. Р. 142-150.

Bai D., Zhu G., Pennefather Р. et al. Distinct functional and pharmacological properties of tonic and quantal inhibitory postsynaptic currents mediated by gamma-aminobutyric acid(A) receptors in hippocampal neurons. Mol. Pharmacol. 2001. Vol. 59. № 4. Р. 814-824

Cossart R., Dinocourt C., Hirsch J.C. et al. Dendritic but not somatic GABA-ergic inhibition is decreased in experimental epilepsy. Nat. Neurosci. 2001. Vol. 4. № 1. Р. 52-62.

Семьянов А.В. ГАМК-эргическое торможение в ЦНС: типы ГАМК-рецепторов и механизмы тонического ГАМК-опосредованного тормозного действия. Нейрофизиология/Neuro-physiology. 2002. T. 34. № 1. С. 81-92.

Brooks-Kayal A.R., Shumate M.D., Jin H. et al. Selective changes in single cell GABA(A) receptor subunit expression and function in temporal lobe epilepsy. Nat. Med. 1998. Vol. 4. № 10. Р. 1166-1172.

Mascia M.P., Bachis Е., Obili N. et. al. Thiocolchicoside inhibits the activity of various subtypes of recombinant GABAA receptors expressed in Xenopus laevis oocytes. EJP. 2007. № 558. P. 37-42.

Umarkar A.R., Bavaskar S.R., Yewale P.N. Thiocolchicoside as muscle relaxant: A review. IJPBS. 2011. Vol. 1. Іssue 3. P. 364-371.

Gervasi M., Sisti D., Benelli Р. et al. The effect of topical thiocolchicoside in preventing and reducing the increase of muscle tone, stiffness, and soreness. Medicine. 2017. № 96. 30(e7659).

Carta M., Murru L., Botta Р. et al. The muscle relaxant tiocolchicoside is an antagonist of GABAA receptor function in the central nervous system. Neurupharmacology. 2006. № 51. P. 805-815.

O’Dwyer N.J., Ada L., Neilson P.D. Spasticity and muscle contracture following stroke. Brain. 1996. 119. P. 1737-1749.

Cimino M., Marini P., Cattabeni F. Interaction of thiocolchicoside with [3H]strychnine binding sites in rat spinal cord and brainstem. Eur. J. Pharmacol. 1996. № 318(1). P. 201-4.

Botica N. Digital latin American and Caribbean medical magazine. 2015. № 47.




Copyright (c) 2019 INTERNATIONAL NEUROLOGICAL JOURNAL

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

© Publishing House Zaslavsky, 1997-2019

 

   Seo анализ сайта