Fibrin biomatrix as an environment for viability support, direct differentiation and transplantation for neuronal progenitors of different origin

N.P. Oleksenko


The task of modern neuroregenerative cell technology is to recover damaged 3D structure of nerve tissue and find adequate matrix for transplanted cells. In this sense, fibrin 3D matrix has the following advantages: the absence of toxicity, the possibility of biodegradation, the maintenance of integration and supporting functional activity of targeted transplanted cells into the tissue. Fibrin clot can be obtained for 1–2 hours before the need to use; this is autologous material that removes the ethical issues, problems of immunologic havoc and infection; this is an inexpensive method. It’s a source of growth factors (PDGF, TGFβ, IGF, VEFG, EGF and others), essential amino acids and can be enriched with other bioactive substances to stimulate direct differentiation. So, fibrin 3D matrix is forming favorable microenvironment for nerve cells progenitors and stem cells and progenitors of other origin. Monitoring of cell culture shows the stimulation of viability, proliferation, neuron- and angiogenesis. Thus, fibrin 3D matrix has a large potential for using in the neuroreparative cell technology.


fibrin; 3D matrix; neuronal progenitors; MSC; neuronal differentiation; review


Litvinov R.I., Gorkun O.V., Owen S.F., Shuman H., Weisel J.W. // Blood. 2005. Nov 1; 106(9): 2944-51.

Краснов А.В. Астроцитарные белки головного мозга: структура, функции, клиническое значение // Неврологический журнал. 2012; 1: 37-42.

Cargnello M., Roux P.P. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases // Mol. Biol. Rev. 2011 Mar; 75(1): 50-83

Савчук О.М., Чернишов В.І., Волков Г.Л. Дослідження властивостей згустків, сформованих із дезАА- та дезААВВ-фібрину з різною структурою поверхні // Біополімери і клітина. 2006. 22(2): 102-108.

Robinson J., Lu P. Optimization of trophic support for stem cell graft in sites of spinal cord injury // Exp. Neurol. 2017 May; 291: 87-97. doi: 10.1016/j.expneurol.2017.02.007.

Sadri S., Khazaei M., Ghanbari A., Khazaei M.R., Shah P. Neuronal differentiation of PC12 and embryonic stem cells in two- and three-dimensional in vitro culture // Indian J. Exp. Biol. 2014 Apr; 52(4): 305-11; № 4.

Bento A.R., Quelhas P., Oliveira M.J., Pêgo A.P., Amaral I.F. Three-dimensional culture of single embryonic stem-derived neural/stem progenitor cells in fibrin hydrogels: neuronal network formation and matrix remodeling // J. Tissue Eng. Regen. Med. 2017 Dec; 11(12): 3494-3507. doi: 10.1002/term.2262.

Man A.J., Davis H.E., Itoh A., Leach J.K., Bannerman P. Neurite outgrowth in fibrin gels is regulated by substrate stiffness // Tissue Eng. Part. A. 2011 Dec; 17(23–24): 2931-2942. doi: 10.1089/ten.tea.2011.0030.

Yao S., Liu X., Yu S., Wang X., Zhang S., Wu Q. et al. Co-effects of matrix low elasticity and aligned topography on stem cell neurogenic differentiation and rapid neurite outgrowth // Nanoscale. 2016 May 21; 8(19): 10252-65. doi: 10.1039/c6nr01169a.

Tara S., Krishnan L.K. Bioengineered fibri-based niche to direct outgrowth of circulating progenitors into neuron-like cells for potential use in cellular theraphy // J. Neural. Eng. 2015 Jun; 12(3): 036011. doi: 10.1088/1741-2560/12/3/036011.

Carriel V., Garrido-Gomez J., Hernandez-Cortes P., Garzón I., García-García S., Sáez-Moreno J.A. Combination of fibrin-agarose hydrogels and adipose-derived mesenchymal stem cells for peripheral nerve regeneration // J. Neural. Eng. 2013 Apr; 10(2): 026022. doi: 10.1088/1741-2560/10/2/026022.

Carriel V., Scionti G., Campos F., Roda O., Castro B., Cornelissen M. et al. In vitro characterization of a nanostructered fibrin agarose bio-artificial nerve substitute // J. Tissue Eng. Regen. Med. 2015 May; 11(5): 1412-1426. doi: 10.1002/term.2039.

Schuh C.M., Morton T.J., Banerjee A., Grasl C., Schima H., Schmidhammer R. et al. Activation of schwann cell-like cells on aligned fibrin-poly (lactic-co-glycolic acid) structures: a novel construct for application in peripheral nerve regeneration // Cells Tissues Organs. 2015; 200(5): 287-99. doi: 10.1159/000437091.

Yasuda H., Kuroda S., Shichinohe H., Kamei S., Kawamura R., Iwasaki Y. Effect of biodegradable fibrin scaffold on survival, migration and differentiation of transplanted bone marrow stromal cells after cortical injury in rats // J. Neurosurg. 2010 Feb; 112(2): 336-44. doi: 10.3171/2009.2.JNS08495.

Tatullo M., Marrelli M., Cassetta M., Pacifici A., Stefanelli L.V., Scacco S. et al. Platelet rich fibrin (P.R.F.) in reconstructive surgery of atrophied maxillary bones: Clinical and histological evaluations // Int. J. Med. Sci. 2012; 9(10): 872-80. doi: 10.7150/ijms.5119.

Amable P.R., Carias R.B.V., Teixeira M.V.T. da Cruz Pacheco I., Corrêa do Amaral R.J., Granjeiro J.M. et al. Platelet-rich plasma preparation for regenerative medicine: optimization and quantification of cytokines and growth factors // Stem. Cell. Researh. & Therapy. 2013 Jun 7; 4(3): 67. doi: 10.1186/scrt218.

Hotwani K., Sharma K. Platelet rich fibrin — a novel acumen into regenerative endodontic therapy // Restor. Dent. Endod. 2014 Feb; 39(1): 1-6. doi: [10.5395/rde.2014.39.1.1].

Abbaszadeh H.A., Tiraihi T., Delshad A., Saghedizadeh M., Taheri T., Kazemi H. et al. Differentiation of neurosphere-derived rat neural stem cells into oligodendrocyte-like cells by repressing PDGF-α and Olig2 with triiodothyronine // Tissue Cell. 2014 Dec; 46(6): 462-9. doi: 10.1016/j.tice.2014.08.003.

Sil S., Periyasamy P., Thangarai A., Buch S. PDGF/PDGFR axis in the neural system // Mol. Aspects Med. 2018 Aug; 17(30): 133-134. doi: 10.1016/j.mam.2018.01.006.

Moore L., Bain J.M., Loh J.M., Steven W., Levison. PDGF-responsive progenitors persist in the subventricular zone across the lifespan // ASN Neuro. 2014 Feb 7; 2(6): eoo137. doi: [10.1042/AN20120041].

Hill R.A., Patel K.D., Medved J., Reiss A.M., Nishiyama A. NG2 cells in white matter but not gray matter proliferate in response to PDGF // J. Neurosci. 2013 Sep 4; 33(36): 14558-66. doi: 10.1523/JNEUROSCI.2001-12.2013.

Glannakopoulou A., Grigoriadis N., Polyzoidou E., Lourbopoulos A., Michaloudi E., Papadopoulos G.C. Time-dependent fate of transplanted neural precursor cells in experimental autoimmune encephalomyelitis mice // Exp. Neurol. 2011 Jul; 230(1): 16-26. doi: 10.1016/j.expneurol.2010.04.011.

Carlson S.W., Saatman K.E. Central infusion of IGF-1 increases hyppocampal neurogenesis and improves neurobehavioral function following traumatic brain injury // J. Neurotrauma. 2018 Jul 1; 35(13): 1467-1480. doi: 10.1089/neu.2017.5374.

Li J.A., Zhao C.F., Li S.J., Zhang J., Li Z., Zhang Q. et al. Modified insulin-like growth factor 1 containing collagen-binding domain for nerve regeneration // Neural Regen Res. 2018. Mar 16; 13(2): 298-303. doi: [10.4103/1673-5374.226400].

Wang Y., Zhang D., Zhang Y., Ni N., Tang Z., Bai Z. et al. Insulin-like growth factor-1 regulation of retinal progenitor cell proli-feration and differentiation // Cell. Cycle. 2018; 17(4): 515-526. doi: 10.1080/15384101.2018.1431594.

Gonzalez-Perez O., Romero-Rodriguez R., Soriano-Navarro M., Garcia-Verdugo J.M., and Alvarez-Buylla A. Epidermal growth factor induces the progeny of subventricular zone type B cells to migrate and differentiate into oligodendrocytes // Stem. Cells. 2009 Aug; 27(8): 2032-43. doi: [10.1002/stem.119].

Ozturk A.M., Sozbilen M.C., Sevgili E., Dagci T., Özyalcin H., Armagan G. Epidermal growth factor regulate apoptosis and oxidative stress in a rat model of spinal cord injury // Injury. 2018 Jun; 49(6): 1038-1045. doi: 10.1016/j.injury.2018.03.021.

Esposito E., Hayakawa K., Ahn B.J., Chan S.J., Xing C., Liang A.C. et al. Effects of ischemic post-conditioning on neuronal VEGF regulational and microglial polarization in a rat model of focal cerebral ischemia // Neural. Regen. Res. 2018 Jul; 146(2): 160-172. doi: 10.1111/jnc.14337.

Park M.N., Lee J.Y., Jeong M.S., Jang H.S., Endo S., Bae J.S. et al. The roll of Purkinje cell-derived VEGF in cerebellar astrogliosis in Niemann-Pick type C mice // BMB Rep. 2018 Feb; 51(2): 79-84.

Lu P., Grahman L., Wang Y., Wu D., Tuszynski M. Promotion of survival and differentiation of neural stem cells with fibrin and growth factor coctails after severe spinal cord injury // J. Vis. Exp. 2014 Jul 27; (89): e50641. doi: 10.3791/50641.

Qin J., Wang L., Sun Y., Sun X., Wen C., Shahmoradi M. et al. Concentration growth factor increases Schwann cell proliferation and neurotrophic factor secretion and promotes functional nerve recovery in vivo // Int. J. Mol. Med. 2016 Feb; 37(2): 493-500. doi: 10.3892/ijmm.2015.2438.

Silva J., Bento A.R., Barros D., Laundos T.L., Sousa S.R., Quelhas P. et al. Fibrin functionalization with synthetic adhesive ligands interacting with α6β1 integrin receptor enchance neurite outgrowth of embryonic stem cell-derived neural stem/progenitors // Acta Biomater. 2017 Sep 1; 59: 243-256. doi: 10.1016/j.actbio.2017.07.013.

Tsymbalyuk V.I., Vasylyeva I.G., Oleksenko N.P. Interaction of components in 3D PRF matrix and neuronal cells in vitro. Advances in tissue engineering and regenerative medicine. 2017. Aug 15; 5(2): 000044. doi: 10.17265/2328-2150/2017.08.005.

Uwamori H., Higuchi T., Arai K., Sudo R. Integration of neurogenesis and angiogenesis models for constructing a neurovascular tissue // Sci. Rep. 2017 Dec 11; 7(1): 17349. doi: 10.1038/s41598-017-17411-0.

Fathi S.S., Zaminy A. Stem cell theraphy for nerve injury // World J. Stem Cells. 2017 Sep 26; 9(9): 144-151. doi: [10.4252/wjsc.v9.i9.144].

Jose A., Krishnan L.K. Effect of matrix composition on differentiation of nestine-positive neural progenitors from circulation into neurons // J. Neural. Eng. 2010 Jun; 7(3): 036009.

McGrath A.M., Brohlin M., Kingham P.J., Novikov L.N., Wiberg M., Novikova L.N. Fibrin conduit supplemented with human mesenchymal stem cells and immunosuppressive treatment enchances regeneration after peripheral nerve injury // Neurosci Lett. 2012 May 16; 516(2): 171-6. doi: 10.1016/j.neulet.2012.03.041.

Sterm B.M., Hicok K.C., Zhu M., Wulur I., Alfonso Z., Schreiber R.E. et al. Multipotential differentiation of adipose tissue-derived cells // Keio J. Med. 2005 Sep; 54(3): 132-41.

Kingham P.J., Kalbermatten D.F., Mathay D., Armstrong S.J., Wiberg M., Terenghi G. Adipose-derived stem cells differentiate into Schwann cell phenotype and promote neurite outgrowth in vitro // Exp. Neurol. Oct; 2007(2): 267-74.

di Summa P.G., Kingham P.J., Raffoul W., Wiberg M., Terenghi G., Kalbermatten D.F. Adipose-derived stem cells enchance peripheral nerve regeneration // J. Plast. Reconstr. Aesthet. Surg. 2010 Sep; 63(9): 1544-52. doi: 10.1016/j.bjps.2009.09.012.

Yu H., Peng J., Guo Q., Zhang L., Li Z., Zhao B. et al. Improvement of peripheral nerve regeneration in acellular nerve grafts with local release of nerve growth factor // Microsurgery. 2009; 29(4): 330-336. doi: 10.1002/micr.20635.

Widgerow A.D., Salibian A.A., Lalezari S., Evans G.R. Neuromodulatory nerve regeneration: adipose tissue-derived stem cells and neurotrophic mediation in peripheral nerve regeneration // J. Neurosci Res. 2013 Dec; 91(12): 1517-24. doi: 10.1002/jnr.23284.

di Summa P.G., Kingham P.J., Raffoul W., Wiberg M., Terenghi G., Kalbermatten D.F. Adipose-derived stem cells enchance peripheral nerve regeneration // J. Plast. Reconstr. Aesthet. Surg. 2010 Sep; 63(9): 1544-52. doi: 10.1016/j.bjps.2009.09.012.

Oliveira J.T., Almeida F.M., Biancalana A., Baptista A.F., Tomaz M.A., Melo P.A. et al. Mesenchymal stam cells in a polycaprolactone conduit enchance median-nerve regeneration, prevent decrease of creatine phosphokinase levels in muscle and improve functional recovery in mice // Neuroscience. 2010 Nov 10; 170(4): 1295-303. doi: 10.1016/j.neuroscience. 2010.08.042.

Orbay H., Uysal A.C., Hyakusoku H., Mizuno H. Differentiated and undifferentiated adipose-derived stem cells improve fubction in rats with peripheral nerve gaps // J. Plast. Reconstr. Aesthet. Surg. 2012 May; 65(5): 657-64. doi: 10.1016/j.bjps.2011.11.035.

Garsia-Castro J., Trigueros C., Madrenas J., Pérez-Simón J.A., Rodriguez R., Menendez P. Mesenchumal stem cells and their use as cell replacement therapy and disease modeling tool // J. Cell. Mol. Med. 2008 Dec; 12(6B): 2552-65. doi: 10.1111/j.1582-4934.2008.00516.x.

Chen C.J., Ou Y.C., Liao S.L., Chen S.Y., Wu C.W., Wang C.C. et al. Transplantation of bone marrow stromal cells for peripheral nerve repair // Exp. Neurol. 2007 Mar; 204(1): 443-53.

Wang J., Ding F., Gu Y., Gu X. Bone marrow mesenchymal stem cells promote cell proliferation and neurotrophic function of Schwann cells in vitro and in vivo // Brain Res. 2009 Mar 25; 1262: 7-15. doi: 10.1016/j.brainres.2009.01.056.

Shakhbazau A.V., Petyovka N.V., Kosmacheva S.M., Potapnev M.P. Neurogenic induction of human mesenchymal stem cells in fibrin 3D matrix // Bull. Exp. Biol. Med. 2011 Feb; 150(4): 547-50. doi: 10.1007/s10517-011-1186-2} •.

Keilhoff G., Stang F., Goihl A., Wolf G., Fansa H. Transdifferentiated mesenchymal stem cells as alternative therapy in supporting nerve regeneration and myelination // Cell. Mol. Neurobiol. 2006 Oct-Nov; 26(7–8): 1235-52.

Raheja A., Suri V., Sarkar C., Sarkar C., Srivastava A., Mohanty S. et al. Dose-dependent facilitation of peripheral nerve regeneration by bone marrow-derived mononuclear cells: a randomized controlled study: laboratory investigation // J. Neurosurg. 2012 Dec; 117(6): 1170-81. doi: 10.3171/2012.8.JNS111446.

Hu N., Wu H., Xue C., Gong Y., Wu J., Xiao Z. Long-term outcome of the repair of 50 mm long median nerve defects in rhesus monkeys with marrow mesenchymal cells-containing chitosan-based engineered nerve grafts // Biomaterials. 2013 Jan; 34(1): 100-11. doi: 10.1016/j.biomaterials.2012.09.020.

Ye F., Li H., Qiao G., Feng Chen, Hao Tao, Aiyu Ji et al. Platelet-rich plasma gel in combination with Schwann cells for repair of sciatic nerve injury // Neural. Regen. Res. 2012 Oct 15; 29(7): 2286-2292. doi: [10.3969/j.issn.1673-5374.2012.29.007].

Lööv C., Shevchenko G., Nadadhur A.G., Clausen F., Hil-lered L., Wetterhall M. et al. Identification of injury specific proteins in a cell culture model of traumatic brain injury // PLOS. 2013 February 7. Available from;


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


© Publishing House Zaslavsky, 1997-2020


   Seo анализ сайта