Cognitive dysfunction in children: the potential of pharmacological correction using a combination of amino acids and vitamin B6

M.V. Khaitovych


Cognitive functions include the ability to understand, study, perceive and process external information. Among the main causes of cognitive dysfunction we can highlight perinatal damage to the central nervous system or asphyxia, as well as environmental factors. Children have such manifestations of cognitive dysfunction as learning disabilities, motor defects, mixed specific developmental disorders. The most frequent complaint is the decrease of attention concentration, noted in 21 % of children in Ukraine. Cognitive dysfunction is often combined with depression, anxiety, addictive behavior; in almost half of patients, cognitive dysfunctions persist into adult age. Among the mechanisms of development of cognitive dysfunction, the key factors are oxidative stress and low-intensity inflammation in ganglion cells. According to the results of experimental and clinical studies, it has been proved that amino acids asparagine and glutamine, as well as DL-phosphoserine and vitamin B6 as the main components of the combination drug Cogivis contribute to the development of the brain, provide synthesis of proteins, nucleotides, neurotransmitters, glutathione; affect the oxidative stress in the central nervous system, in particular in the hippocampus. All this creates conditions for optimal functioning of neurons and development of cognitive functions.


cognitive dysfunction, children; asparagine; glutamine; DL-phosphoserine; pyridoxine; Cogivis


Krasnov V.S., Shmonin A.A., Maltseva M.N., Melnikova E.V., Ivanova G.E. Cognitive disorders in medical rehabilitation // Consilium medicum. — 2016. — 18(13). — Р. 32-36.

Scherwath A., Sommerfeldt D.W., Bindt C., Nolte A., Boiger A., Koch U., Petersen-Ewert C. Identifying children and adolescents with cognitive dysfunction following mild traumatic brain injury — preliminary findings on abbreviated neuropsychological testing // Brain Inj. — 2011. — 25(4). — Р. 401-8. doi: 10.3109/02699052.2011.557351.

Polaha J., Dalton W.T., Allen S. The Prevalence of Emotional and Behavior Problems in Pediatric Primary Care Serving Rural Children // Journal of Pediatric Psychology. — 2011. — 36(6). — Р. 652-660. doi: 10.1093/jpepsy/jsq116.

Wilkes M.A. Pediatric Attention Deficit Hyperactivity Disorder (ADHD). — 2018.

Евтушенко С.К., Морозова Т.М., Шестова Е.П., Трибрат А.А., Морозова А.В. Нарушение когнитивных функций у детей: нейрофизиологическая оценка и коррекция // Міжнародний неврологічний журнал. — 2010. — 31(1).

León-Pedroza J.I., González-Tapia L.A., Del Olmo-Gil E. et al. Low-grade systemic inflammation and the development of metabolic diseases: from the molecular evidence to the clinical practice // Cir. Cir. — 2015. — S0009-7411(15)00118-8. Mode of access:

Herman F., Westfall S., Brathwaite J., Pasinetti G.M. Suppression of Presymptomatic Oxidative Stress and Inflammation in Neurodegeneration by Grape-Derived Polyphenols // Front. Pharmacol. — 2018, Aug 28. — 9. — Р. 867. doi: 10.3389/fphar.2018.00867. eCollection 2018.

Kaidashev I.P. Change of lifestyle, energy metabolism disturbance and systemic inflammation as the evolution factors of civilization diseases // Український медичний часопис. — 2013. — Режим доступу до ресурсу:

Arushanyan E.B., Beier E.V. Hippocampus: a target for cognition enhancers // Экспериментальная и клиническая фармакология. — 2007. — 70(4). — Р. 59-65.

de Koning T.J. Amino acid synthesis deficiencies // J. Inherit. Metab. Dis. — 2017. — 40(4). — Р. 609-620. doi: 10.1007/s10545-017-0063-1

Jongkees B.J., Immink M.A., Colzato L.S. Influences of glutamine administration on response selection and sequence learning: a randomized-controlled trial // Sci. Rep. — 2017. — 7. — Р. 2693. doi: 10.1038/s41598-017-02957-w.

Lacreuse A., Moore C.M., LaClair M., Payne L., King J.A. Glutamine/glutamate (Glx) concentration in prefrontal cortex predicts reversal learning performance in the marmoset // Behav. Brain Res. — 2018, Jul 2. — 346. — Р. 11-15. doi: 10.1016/j.bbr.2018.01.025.

Huang D., Liu D., Yin J., Qian T., Shrestha S., Ni H. Glutamate-glutamine and GABA in brain of normal aged and patients with cognitiveimpairment // Eur. Radiol. — 2017 Jul. — 27(7). — Р. 2698-2705. doi: 10.1007/s00330-016-4669-8.

Gorbacheva S.V., Belenichev I.F., Kucherenko L.I., Bukhtiyarova N.V. Glutathion-dependent mechanisms of neuroprotective action of new metabolic drug «Angioline» underinduction of nitrosative stress in vitro // Farmakolohiia ta likarska toksykolohiia. — 2015. — 46(5). — Р. 12-18.

de Kieviet J.F., Oosterlaan J., van Zwol A., Boehm G., Lafeber H.N., van Elburg R.M. Effects of neonatal enteral glutamine supplementation on cognitive, motor and behavioural outcomes in very preterm and/or very low birth weight children at school age // Br. J. Nutr. — 2012, Dec 28. — 108(12). — Р. 2215-20. doi: 10.1017/S0007114512000293.

Chen J., Chen Y., Vail G., Chow H., Zhang Y., Louie L., Li J. et al. The impact of glutamine supplementation on the symptoms of ataxia-telangiectasia: a preclinical assessment // Mol. Neurodegener. — 2016, Aug 18. — 11(1). — Р. 60. doi: 10.1186/s13024-016-0127-y.

Arnaud A., Ramírez M., Baxter J.H., Angulo A.J. Absorption of enterally administered N-acetyl-l-glutamine versus glutamine in pigs // Clin. Nutr. — 2004 Dec. — 23(6). — Р. 1303-1312.

Zhang R., Yang N., Ji C., Zheng J., Liang Z., Hou C.Y., Liu Y.Y., Zuo P.P. Neuroprotective effects of Aceglutamide on motor function in a rat model of cerebral ischemia and reperfusion // Restor. Neurol. Neurosci. — 2015. — 33(5). — Р. 741-759. doi: 10.3233/RNN-150509.

López-Pedrosa J.M., Manzano M., Baxter J.H., Rueda R. N-acetyl-L-glutamine, a liquid-stable source of glutamine, partially prevents changes in body weight and on intestinal immunity induced by protein energy malnutrition in pigs // Dig. Dis. Sci. — 2007 Mar. — 52(3). — Р. 650-658.

Logica T., Riviere S., Holubiec M.I., Castilla R., Barreto G.E., Capani F. Metabolic Changes Following Perinatal Asphyxia: Role of Astrocytes and Their Interaction with Neurons // Front. Aging Neurosci. — 2016, Jun 27. — 8. — Р. 116. doi: 10.3389/fnagi.2016.00116. eCollection 2016.

Ondacova K., Karmazinova M., Lazniewska J., Weiss N., Lacinova L. Modulation of Cav3.2 T-type calcium channel permeability by asparagine-linked glycosylation // Channels (Austin). — 2016. — 10(3). — Р. 175-84. doi: 10.1080/19336950.2016.1138189.

Zhang Z., Obianyo O., Dall E., Du Y., Fu H., Liu X., Kang S.S. et al. Inhibition of delta-secretase improves cognitive functions in mouse models of Alzheimer’s disease // Nat. Commun. — 2017, Mar 27. — 8. — Р. 14740. doi: 10.1038/ncomms14740.

Zhang Z., Song M., Liu X., Kang S.S., Kwon I.S., Duong D.M., Seyfried N.T. et al. Cleavage of tau by asparagine endopeptidase mediates the neurofibrillary pathology in Alzheimer’s disease // Nat. Med. — 2014 Nov. — 20(11). — Р. 1254-62. doi: 10.1038/nm.3700.

Gao J., Li K., Du L., Yin H., Tan X., Yang Z. Deletion of asparagine endopeptidase reduces anxiety- and depressive-like behaviors and improves abilities of spatial cognition in mice // Brain Res. Bull. — 2018 Sep. — 142. — Р. 147-155. doi: 10.1016/j.brainresbull.2018.07.010.

Palmer E.E., Hayner J., Sachdev R., Cardamone M., Kandula T., Morris P., Dias K.R. et al. Asparagine Synthetase deficiency causes reduced proliferation of cells under conditions of limited asparagine // Mol. Genet. Metab. — 2015. — 116. — Р. 178-186. doi: 10.1016/j.ymgme.2015.08.007.

Ruzzo E.K., Capo-Chichi J.M., Ben-Zeev B., Chitayat D., Mao H., Pappas A.L., Hitomi Y. et al. Deficiency of asparagine synthetase causes congenital microcephaly and a progressive form of encephalopathy // Neuron. — 2013, Oct 16. — 80(2). — Р. 429-41. doi: 10.1016/j.neuron.2013.08.013.

Ogawa S., Koga N., Hattori K., Matsuo J., Ota M., Hori H. et al. Plasma amino acid profile in major depressive disorder: Analyses in two independent case-control sample sets // J. Psychiatr. Res. — 2018 Jan. — 96. — Р. 23-32. doi: 10.1016/j.jpsychires.2017.09.014.

Karanova M.V., Ivlicheva N.A. Pool of phosphoethanolamine and phosphoserine in the brain of the snail Lymnaea stagnalis L. in summer and before winter dormancy // Journal of Evolutionary Biochemistry and Physiology. — 2016. — 52(2). — Р. 113-117.

El-Hattab A.W. Serine biosynthesis and transport defects // Mol. Genet. Metab. — 2016 Jul. — 118(3). — Р. 153-9. doi: 10.1016/j.ymgme.2016.04.010.

Tabatabaie L., Klomp L.W., Berger R., de Koning T.J. L-serine synthesis in the central nervous system: a review on serine deficiency disorders // Mol. Genet. Metab. — 2010 Mar. — 99(3). — Р. 256-62. doi: 10.1016/j.ymgme.2009.10.012.

Almeida M.R., Mabasa L., Crane C., Park C.S., Venâncio V.P., Bianchi M.L., Antunes L.M. Maternal vitamin B6 deficient or supplemented diets on expression of genes related to GABAergic, serotonergic, or glutamatergic pathways in hippocampus of rat dams and their offspring // Mol. Nutr. Food Res. — 2016 Jul. — 60(7). — Р. 1615-24. doi: 10.1002/mnfr.201500950.

Kumar N. Nutrients and Neurology // Continuum (Minneap Minn). — 2017 Jun. — 23(3, Neurology of Systemic Disease). — Р. 822-861. doi: 10.1212/01.CON.0000520630.69195.90.

Szymańska K., Kuśmierska K., Demkow U. Inherited disorders of brain neurotransmitters: pathogenesis and diagnostic approach // Adv. Exp. Med. Biol. — 2015. — 837. — Р. 1-8. doi: 10.1007/5584_2014_86.

Dakshinamurti S., Dakshinamurti K. Antihypertensive and neuroprotective actions of pyridoxine and its derivatives // Can. J. Physiol. Pharmacol. — 2015 Dec. — 93(12). — Р. 1083-90. doi: 10.1139/cjpp-2015-0098.

Walia V., Garg C., Garg M. Anxiolytic-like effect of pyrido­xine in mice by elevated plus maze and light and dark box: Evidence for the involvement of GABAergic and NO-sGC-cGMP pathway // Pharmacol. Biochem. Behav. — 2018 Oct. — 173. — Р. 96-106. doi: 10.1016/j.pbb.2018.06.001.

Aspy D.J., Madden N.A., Delfabbro P. Effects of Vitamin B6 (Pyridoxine) and a B Complex Preparation on Dreaming and Sleep // Percept. Mot Skills. — 2018 Jun. — 125(3). — Р. 451-462. doi: 10.1177/0031512518770326.

Jung H.Y., Kim D.W., Nam S.M., Kim J.W., Chung J.Y., Won M.H., Seong J.K. et al. Pyridoxine improves hippocampal cognitive function via increases of serotonin turnover and tyrosine hydroxylase, and its association with CB1 cannabinoid receptor-interacting protein and the CB1 cannabinoid receptor pathway // Biochim. Biophys. Acta Gen. Subj. — 2017 Dec. — 1861(12). — Р. 3142-3153. doi: 10.1016/j.bbagen.2017.09.006.

Yoo D.Y., Kim W., Nam S.M., Chung J.Y., Choi J.H., Yoon Y.S., Won M.H., Hwang I.K. Chronic effects of pyridoxine in the gerbil hippocampal CA1 region after transient forebrain ischemia // Neurochem. Res. — 2012 May. — 37(5). — Р. 1011-8. doi: 10.1007/s11064-011-0696-7.

Abraham P.M., Kuruvilla K.P., Mathew J., Malat A., Joy S., Paulose C.S. Alterations in hippocampal serotonergic and INSR function in streptozotocin induced diabetic rats exposed to stress: neuroprotective role of pyridoxine and Aegle marmelose // J. Biomed. Sci. — 2010, Sep 25. — 17. — Р. 78. doi: 10.1186/1423-0127-17-78.

Hwang I.K., Yoo K.Y., Kim D.H., Lee B.H., Kwon Y.G., Won M.H. Time course of changes in pyridoxal 5’-phosphate (vitamin B6 active form) and its neuroprotection in experimental ischemic da­mage // Exp. Neurol. — 2007 Jul. — 206(1). — Р. 114-25.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


© Publishing House Zaslavsky, 1997-2020


   Seo анализ сайта