DOI: https://doi.org/10.22141/2224-0713.3.97.2018.133679

Algorithm of using a set of laboratory biomarkers in patients with multiple sclerosis with diagnostic and prognostic aim

N.O. Negrych, T.I. Nehrych

Abstract


Background. The purpose of the work was to investigate the possibility of using high-reliable laboratory biomarkers in multiple sclerosis (MS), as well as to develop the structure of a modern laboratory algorithm for this disease, taking into account the possibility of both diagnosing the disease itself and its specific features using laboratory biomarkers. Materials and methods. In order to find valid MS biomarkers investigated in at least two independent studies with statistically significant positive results, a broad literature review was carried out for the period of 2007–2017. To increase the likelihood of a correct diagnostic and prognostic result in MS, we have developed a combined algorithm with the use of a whole group of specific laboratory biomarkers, with indication of their diagnostic and predictive power. Results. In order to diagnose MS, assess the risk of clinically isolated syndrome transformation into MS, determine the activity and progression of the disease, and also to evaluate therapeutic effectiveness, a specific algorithm was offered for laboratory tests using the biomarkers for every group. For each test, a high and low risk is defined, or a cut-off point is established. The summing up of test results of a specified group reflects the general diagnostic and prognostic result. Conclusions. Extremely large number of MS biomarkers is not used in the daily practice of neurologists because of the lack of high validity of these tests. There is still no single clinical sign or diagnostic test sufficient for independent and absolutely accurate diagnosis of MS and its features. Most biomarkers can characterize only a group of patients in general, with low diagnostic properties when applying a separate test in a particular patient. Therefore, in order to increase diagnostic efficiency, it is necessary to use a set of specific laboratory biomarkers. This is a priority task on the way of the implementation of individualized medicine, which, in MS, will enable to predict the risk of the disease, precisely differentiate MS from other diseases, correctly evaluate the characteristics of the disease and choose an effective treatment, as well as to predict the course of the disease and the occurrence of undesirable side reactions.

Keywords


multiple sclerosis; diagnosis; biomarkers; laboratory algorithm

References


Негрич Т.І., Сорокін Б.В., Євтушенко С.К. Від вірогідної діагностики до ефективної терапії розсіяного склерозу // Міжнародний неврологічний журнал. — 2012. — № 3. — С. 152-158.

Kuhle J., Disanto G., Dobson R. et al. Conversion from clinically isolated syndrome to multiple sclerosis: a large multicentre study // Multiple Sclerosis Journal. — 2015. — № 21(8). — Р. 1013-1024. doi: 10.1177/1352458514568827.

Thompson A.J., Banwell B.L., Barkhof F. et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria // The Lancet Neurology. — 2017. — № 17(2). — Р. 162-173. doi: 10.1016/S1474-4422(17)30470-2.

Aliaga E.S., Barkhof F. MRI mimics of multiple sclerosis // Handbook of clinical neurology. — Elsevier, 2014. — Vol. 122. — Р. 291-316. doi: 10.1016/B978-0-444-52001-2.00012-1.

Dobson R., Ramagopala S., Davis A., Giovannoni G. Cerebrospinal fluid oligoclonal bands in multiple sclerosis and clinically isolated syndromes: a meta-analysis of prevalence, prognosis and effect of latitude // J. Neurol. Neurosurg. Psychiatry. — 2013. — jnnp-2012. doi: 10.1136/jnnp-2012-304695.

D’Ambrosio A., Pontecorvo S., Colasanti T., Zamboni S., Francia A., Margutti P. Peripheral blood biomarkers in multiple sclerosis // Autoimmunity reviews. — 2015. — Vol. 14(12). — Р. 1097-1110. doi: 10.1016/j.autrev.2015.07.014.

Marcus J.F., Waubant E.L. Updates on clinically isolated syndrome and diagnostic criteria for multiple sclerosis // The Neurohospitalist. — 2013. — Vol. 3(2). — Р. 65-80. doi: 10.1177/1941874412457183.

Lublin F.D., Reingold S.C., Cohen J.A., Cutter G.R., Sørensen P.S., Thompson A.J., Bebo B. Defining the clinical course of multiple sclerosis. The 2013 revisions // Neurology. — 2014. — Vol. 83(3). — Р. 278-286. doi:10.1212/WNL.0000000000000560.

Wang H., Wang K., Wang C., Zhong X., Qiu W., Hu X. Increased plasma levels of pentraxin 3 in patients with multiple sclerosis and neuromyelitis optica // Multiple Sclerosis Journal. — 2013. — Vol. 19(7). — Р. 926-931. doi: 10.1177/1352458512457845.

Hein K., Köhler A., Diem R. et al. Biological markers for axonal degeneration in CSF and blood of patients with the first event indicative for multiple sclerosis // Neuroscience letters. — 2008. — Vol. 436(1). — Р. 72-76. doi: 10.1016/S1474-4422(04)00964-0.

Filippi M., Rocca M.A., Ciccarelli O. et al. MRI criteria for the diagnosis of multiple sclerosis: MAGNIMS consensus guidelines // The Lancet Neurology. — 2016. — Vol. 15(3). — Р. 292-303. doi: 10.1016/S1474-4422(15)00393-2.

Teunissen C.E., Dijkstra C., Polman C. Biological markers in CSF and blood for axonal degeneration in multiple sclerosis // The Lancet Neurology. — 2005. — Vol. 4(1). — Р. 32-41. doi: 10.1016/S1474-4422(04)00964-0.

Khalil M., Enzinger C., Langkammer C. et al. CSF neurofilament and N-acetylaspartate related brain changes in clinically isolated syndrome // Multiple Sclerosis (Houndmills, Basingstoke, England). — 2013. — Vol. 19(4). — Р. 436-442. doi: 10.1177/1352458512458010.

Hosmer Jr D.W. Applied logistic regression / Hosmer Jr D.W., Lemeshow S., Sturdivant R.X. — John Wiley & Sons, 2013. — Vol. 398.

Aydin S. A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA // Peptides. — 2015. — Vol. 72. — Р. 4-15. doi: 10.1016/j.peptides.2015.04.012.

Link H., Huang Y.M. Oligoclonal bands in multiple sclerosis cerebrospinal fluid: an update on methodology and clinical usefulness // Journal of neuroimmunology. — 2006. — Vol. 180(1). — Р. 17-28. doi: 10.1016/j.jneuroim.2006.07.006.

Srivastava R., Aslam M., Kalluri S.R. et al. Potassium channel KIR4. 1 as an immune target in multiple sclerosis // New England Journal of Medicine. — 2012. — Vol. 367(2). Р. 115-123. doi: 10.1056/NEJMoa1110740.

Husted C. Structural insight into the role of myelin basic protein in multiple sclerosis // Proceedings of the National Academy of Sciences of the United States of America. — 2006. — Vol. 103(12). — Р. 4339-4340. doi: 10.1073/pnas.0601002103.

Mayer M.C., Meinl E. Glycoproteins as targets of autoantibodies in CNS inflammation: MOG and more // Therapeutic advances in neurological disorders. — 2012. — Vol. 5(3). — Р. 147-159. doi: 10.1177/1756285611433772.

Schwarz M., Spector L., Gortler M. et al. Serum anti-Glc (α1, 4) Glc (α) antibodies as a biomarker for relapsing-remitting multiple sclerosis // Journal of the neurological sciences. — 2006. — Vol. 244(1). — Р. 59-68. doi: 10.1016/j.jns.2005.12.006.

Sundström P., Nyström M., Ruuth K., Lundgren E. Antibodies to specific EBNA-1 domains and HLA DRB11501 interact as risk factors for multiple sclerosis // Journal of neuroimmunology. — 2009. — Vol. 215(1). — Р. 102-107. doi: 10.1016/j.jneuroim.2009.08.004.

Myronovkij S., Negrych N., Nehrych T., Redowicz M.J., Souchelnytskyi S., Stoika R., Kit Y. Identification of a 48 kDa form of unconventional myosin 1c in blood serum of patients with autoimmune diseases // Biochemistry and biophysics reports. — 2016. — Vol. 5. — Р. 175-179. doi: 10.1016/j.bbrep.2015.12.001.

Petzold A. Intrathecal oligoclonal IgG synthesis in multiple sclerosis // J. Neuroimmunol. — 2013. — Vol. 262. — Р. 1-10. doi: 10.1016/j.jneuroim.2013.06.014.

Villar L.M., Masjuan J., Gonzalez-Porque P. et al. Intrathecal IgM synthesis predicts the onset of new relapses and a worse disease course in MS // Neurology. — 2002. — Vol. 59(4). — Р. 555-559. doi: 10.1212/WNL.59.4.555.

Brettschneider J., Tumani H., Kiechle U. et al. IgG antibodies against measles, rubella, and varicella zoster virus predict conversion to multiple sclerosis in clinically isolated syndrome // PloS Оne. — 2009. — Vol. 4(11). — Р. e7638. doi: 10.1371/journal.pone.0007638.

Senel M., Tumani H., Lauda F. et al. Cerebrospinal fluid immunoglobulin kappa light chain in clinically isolated syndrome and multiple sclerosis // PLoS One. — 2014. — Vol. 9(4). — e88680. doi: 10.1371/journal.pone.0088680.

Marnetto F., Valentino P., Caldano M., Bertolotto A. Detection of potassium channel KIR4. 1 antibodies in Multiple Sclerosis patients // Journal of immunological methods. — 2017. — Vol. 445. — Р. 53-58. doi: 10.1016/j.jim.2017.03.008.

Reindl M., Di Pauli F., Rostásy K. Berger T. The spectrum of MOG autoantibody-associated demyelinating diseases // Nat. Rev. Neurol. — 2013. — Vol. 9. — Р. 455-461. doi: 10.1038/nrneurol.2013.118.

Keller A., Leidinger P., Steinmeyer F. et al. Comprehensive analysis of microRNA profiles in multiple sclerosis including next-generation sequencing // Multiple Sclerosis Journal. — 2014. — Vol. 20(3). — Р. 295-303. doi: 10.1177/1352458513496343.

Teunissen C.E., Dijkstra C.D., Polman C.H., Hooger-

vorst E.L.J., Von Bergmann K., Lütjohann D. Decreased levels of the brain specific 24S-hydroxycholesterol and cholesterol precursors in serum of multiple sclerosis patients // Neuroscience letters. — 2003. — Vol. 347(3). — Р. 159-162. doi: 10.1016/S0304-3940(03)00667-0.

Brettschneider J., Czerwoniak A., Senel M. et al. The chemokine CXCL13 is a prognostic marker in clinically isolated syndrome (CIS) // PloS Оne. — 2010. — Vol. 5(8). — e11986. doi: 10.1371/journal.pone.0011986.

Canto E., Tintore M., Villar L.M. et al. Chitinase 3-like 1: prognostic biomarker in clinically isolated syndromes // Brain. — 2015. — Vol. 138(4). — Р. 918-931. doi: 10.1093/brain/

awv017.

Norgren N., Sundström P., Svenningsson A., Rosengren L., Stigbrand T., Gunnarsson M. Neurofilament and glial fibrillary acidic protein in multiple sclerosis // Neurology. — 2004. — Vol. 63(9). — Р. 1586-1590. doi: 10.1212/01.WNL.0000142988.49341.D1.

Trentini A., Comabella M., Tintoré M. et al. N-acetylaspartate and neurofilaments as biomarkers of axonal damage in patients with progressive forms of multiple sclerosis // Journal of neurology. — 2014. — Vol. 261(12). — Р. 2338-2343. doi: 10.1007/s00415-014-7507-4.

Barateiro A., Afonso V., Santos G. et al. S100B as a potential biomarker and therapeutic target in multiple sclerosis // Molecular neurobiology. — 2016. — Vol. 53(6). — Р. 3976-3991. doi: 10.1007/s12035-015-9336-6.

Ummenthum K., Peferoen L.A., Finardi A. et al. Pentraxin-3 is upregulated in the central nervous system during MS and EAE, but does not modulate experimental neurological disease // European journal of immunology. — 2016. — Vol. 46(3). — Р. 701-711. doi: 10.1002/eji.201545950.

Comabella M., Pericot I., Goertsches R. et al. Plasma osteopontin levels in multiple sclerosis // Journal of neuroimmunology. — 2005. — Vol. 158(1). — Р. 231-239. doi: 10.1016/j.jneuroim.2004.09.004.

Trabattoni D., Saresella M., Pacei M. et al. Costimulatory pathways in multiple sclerosis: distinctive expression of PD-1 and PD-L1 in patients with different patterns of disease // The Journal of Immunology. — 2009. — Vol. 183(8). — Р. 4984-4993. doi: 10.4049/jimmunol.0901038.

Mirshafiey A., Asghari B., Ghalamfarsa G., Jadidi-Niaragh F., Azizi G. The Significance of Matrix Metalloproteinases in the Immunopathogenesis and Treatment of Multiple Sclerosis // Sultan Qaboos University Medical Journal. — 2014. — Vol. 14(1). — Р. 13-25. doi: 10.12816/0003332.

Moreno M., Sáenz-Cuesta M., Castilló J. et al. Circulating levels of soluble apoptosis-related molecules in patients with multiple sclerosis // Journal of neuroimmunology. — 2013. — Vol. 263(1). — Р. 152-154. doi: 10.1016/j.jneuroim.2013.07.013.

Sharief M.K., Noori M.A., Douglas M.R., Semra Y.K. Upregulated survivin expression in activated T lymphocytes correlates with disease activity in multiple sclerosis // European journal of neurology. — 2002. — Vol. 9(5). — Р. 503-510. doi: 10.1046/j.1468-1331.2002.00454.x.

Verderio C., Muzio L., Turola E. et al. Myeloid microvesicles are a marker and therapeutic target for neuroinflammation // Annals of neurology. — 2012. — Vol. 72(4). — Р. 610-624. doi: 10.1002/ana.23627.

Fenoglio C., Cantoni C., De Riz M. et al. Expression and genetic analysis of miRNAs involved in CD4+ cell activation in patients with multiple sclerosis // Neuroscience letters. — 2011. — Vol. 504(1). — Р. 9-12. doi: 10.1016/j.neulet.2011.08.021.

Myronovkij S., Negrych N., Nehrych T., Tkachenko V., Souchelnytskyi S., Stoika R., Kit Y. Identification of SER-PRO-CYS Peptide in Blood Serum of Multiple Sclerosis Patients // Protein and peptide letters. — 2016. — Vol. 23(9). — Р. 808-811. doi: 10.2174/0929866523666160622215628.

Negrych N., Myronovskija S., Nehrych T. et al. Identification of the unique properties of IgGs and their heavy chains in blood serum of multiple sclerosis patients // Journal of Autoimmune Disorders. — 2016. — Vol. 2. — Р. 2. doi: 10.21767/2471-8513.100015.

Salzer J., Svenningsson A., Sundström P. Neurofilament light as a prognostic marker in multiple sclerosis // Multiple Sclerosis Journal. — 2010. — Vol. 16(3). — Р. 287-292. doi: 10.1177/1352458509359725.

Silber E., Semra Y.K., Gregson N.A., Sharief M.K. Patients with progressive multiple sclerosis have elevated antibodies to neurofilament subunit // Neurology. — 2002. — Vol. 58(9). — Р. 1372-1381. doi: 10.1212/WNL.58.9.1372.

Fenoglio C., Ridolfi E., Cantoni C. et al. Decreased circulating miRNA levels in patients with primary progressive multiple sclerosis // Multiple Sclerosis Journal. — 2013. — Vol. 19(14). — Р. 1938-1942. doi: 10.1177/1352458513485654.

Koch M., Heersema D., Mostert J., Teelken A., Keyser J.D. Cerebrospinal fluid oligoclonal bands and progression of disability in multiple sclerosis // European journal of neurology. — Vol. 14(7). — Р. 797-800. doi: 10.1111/j.1468-1331.2007.01859.x.

Lourenco P., Shirani A., Saeedi J. et al. Oligoclonal bands and cerebrospinal fluid markers in multiple sclerosis: associations with disease course and progression // Multiple Sclerosis Journal. — 2013. — Vol. 19(5). — Р. 577-584. doi: 10.1177/1352458512459684.

Martínez M.A.M., Olsson B., Bau L. et al. Glial and neuronal markers in cerebrospinal fluid predict progression in multiple sclerosis // Multiple Sclerosis Journal. — 2015. — Vol. 21(5). — Р. 550-561. doi: 10.1177/1352458514549397.

Petzold A., Eikelenboom M.J., Gveric D. et al. Markers for different glial cell responses in multiple sclerosis: clinical and pathological correlations // Brain. — 2002. — Vol. 125(7). — Р. 1462-1473. doi: 10.1093/brain/awf165.

Quintana F.J., Farez M.F., Viglietta V. et al. Antigen microarrays identify unique serum autoantibody signatures in clinical and pathologic subtypes of multiple sclerosis // Proceedings of the National Academy of Sciences. — 2008. — Vol. 105(48). — Р. 18889-18894. doi: 10.1073/pnas.0806310105.

Fissolo N., Cantó E., Vidal-Jordana A., Castilló J., Montalban X., Comabella M. Levels of soluble TNF-RII are increased in serum of patients with primary progressive multiple sclerosis // Journal of neuroimmunology. — 2014. — Vol. 271(1). — Р. 56-59. doi: 10.1016/j.jneuroim.2014.04.001.

Polman C.H., Bertolotto A., Deisenhammer F. et al. Re­commendations for clinical use of data on neutralising antibodies to interferon-beta therapy in multiple sclerosis // The Lancet Neurology. — 2010. — Vol. 9(7). — Р. 740-750. doi: 10.1016/S1474-4422(10)70103-4.

Buck D., Cepok S., Hoffmann S. et al. Influence of the HLA-DRB1 genotype on antibody development to interferon beta in multiple sclerosis // Archives of neurology. — 2011. — Vol. 68(4). — Р. 480-487. doi: 10.1001/archneurol.2011.65.

Zula J.A., Green H.C., Ransohoff R.M., Rudick R.A., Stark G.R., van Boxel-Dezaire A.H. The role of cell type-specific responses in IFN-β therapy of multiple sclerosis // Proceedings of the National Academy of Sciences. — 2011. — Vol. 108(49). — Р. 19689-19694. doi: 10.1073/pnas.1117347108.

Comabella M., Río J., Espejo C. et al. Changes in matrix metalloproteinases and their inhibitors during interferon-beta treatment in multiple sclerosis // Clinical Immunology. — 2009. — Vol. 130(2). — Р. 145-150. doi: 10.1016/j.clim.2008.09.010.

Axtell R.C., De Jong B.A., Boniface K. et al. T helper type 1 and 17 cells determine efficacy of interferon-β in multiple sclerosis and experimental encephalomyelitis // Nature medicine. — 2010. — Vol. 16(4). — Р. 406. doi: 10.1038/nm.2110.

Waschbisch A., Atiya M., Linker R.A., Potapov S., Schwab S., Derfuss T. Glatiramer acetate treatment normalizes deregulated microRNA expression in relapsing remitting multiple sclerosis // Plo

Sone. — 2011. — Vol. 6(9). — Р. e24604. doi: 10.1371/journal.pone.0024604.

Rudick R.A., Ransohoff R.M., Lee J.C., Peppler R., Yu M., Mathisen P.M., Tuohy V.K. In vivo effects of interferon beta-1a on immunosuppressive cytokines in multiple sclerosis // Neurology. — 1998. — Vol. 50(5). — Р. 1294-1300. doi: 10.1212/

WNL.50.5.1294.

Calabresi P.A., Giovannoni G., Confavreux C. et al. The incidence and significance of anti-natalizumab antibodies Results from AFFIRM and SENTINEL // Neurology. — 2007. — Vol. 69(14). — Р. 1391-1403. doi: 10.1212/01.wnl.0000277457.17420.b5.

Lundkvist M., Engdahl E., Holmén C. et al. Characterization of anti-natalizumab antibodies in multiple sclerosis patients // Multiple Sclerosis Journal. — 2013. — Vol. 19(6). — Р. 757-764. doi: 10.1177/1352458512462920.

Plavina T., Subramanyam M., Bloomgren G. et al. Anti-JC virus antibody levels in serum or plasma further define risk of natalizumab-associated progressive multifocal leukoencephalopathy // Annals of neurology. — 2014. — Vol. 76(6). — Р. 802-812. doi: 10.1002/ana.24286.

Schwab N., Schneider-Hohendorf T., Posevitz V. et al. L-selectin is a possible biomarker for individual PML risk in natalizumab-treated MS patients // Neurology. — 2013. — Vol. 81(10). — Р. 865-871. doi: 10.1212/WNL.0b013e3182a351fb.




Copyright (c) 2018 INTERNATIONAL NEUROLOGICAL JOURNAL

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

© Publishing House Zaslavsky, 1997-2020

 

   Seo анализ сайта